1-1hit |
Xiaozhou CHENG Rui LI Yanjing SUN Yu ZHOU Kaiwen DONG
Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.