1-14hit |
Yang CAO Qiang TU Xiuming SHAN Yong REN
Discrete Wavelet Multi-carrier Transceiver (DWMT) system, which can be viewed as a kind of OFDM, has many advantages because it uses wavelets as its base functions. In this paper we present a new sub-carrier frequency offset correction method for DWMT systems with little assistant information. The essential ideal of this algorithm is: when an orthogonal multi-carrier system is of perfect frequency synchronize, the demodulated signals of different sub-carriers are independent of each other. Whereas when frequency offset exists, intercarrier interference will distort the demodulated signal, i.e. every demodulated signal is the sum of several modulated signals' projects on the demodulating frequency. So the adjacent demodulated signals consist of the element of the same modulated signal, and these demodulated signals are correlated with each other. The degree that they correlated with each other depends on sub-carrier relative frequency offset. Since that little assistant information is used in this algorithm the spectrum efficiency can be largely increased. Simulation results shown that if the number of the sub-carrier of the DWMT system is bigger than 1000, the relative frequency offset can be limited in 2%.
Most applications can adapt their coding techniques and sending rates according to the network congestion and the resource needed can be provided at the beginning of the transmission. So traditional Differentiated Services (DiffServ) model is too rigid to them. In this paper, we are seeking a balance between the relative DiffServ and the absolute DiffServ and propose a new Diffserv model, a relative Differentiated Service model with admission control, which suits the adaptive application. By providing the proportional differentiated services in core routers and loss-rate based CAC control in edge routers, we can make both the network and the users adaptive: the network is adaptive to the traffic load and the users is adaptive to the network congestion. This model is promising to the elastic but unpredictable traffic, such as IP telephony or other multimedia applications.
Jingbo SUN Yue WANG Jian YUAN Xiuming SHAN
Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.
Wei TIAN Yue WANG Xiuming SHAN Jian YANG
In this paper, we propose a robust registration method, named Bounded-Variables Least Median of Squares (BVLMS). It overcomes both the misassociations and the ill-conditioning due to the interactions between Bounded-Variables Least Squares (BVLS) and Least Median of Squares (LMS). Simulation results demonstrate the feasibility of this new registration method.
Yongkang XIAO Lin ZHANG Xiuming SHAN Yong REN Zhengxin MA
The unfairness problem among TCP connections has been proved to be very severe in the IEEE 802.11-based wireless ad hoc networks because the hidden station problem still exists and the binary exponential backoff algorithm always favors the latest successful station. In this paper, a novel protocol, neighbor-medium-aware MAC (NEMA-MAC), is proposed to improve the TCP fairness. By adding a medium (channel) state field in the head of the traditional IEEE 802.11 MAC frame, the NEMA-MAC protocol provides a communication mechanism to resolve the hidden station problem. In addition, when a collision occurs, the new backoff algorithm makes the senders cooperatively adjust the contention window according to their local and neighbors' channel usage indexes. The simulation results show that TCP sessions can acquire satisfying fairness and increase the throughput in the NEMA-MAC-based multihop ad hoc networks.
Yongkang XIAO Xiuming SHAN Yong REN
TCP performance in the IEEE 802.11-based multihop ad hoc networks is extremely poor, because the congestion control mechanism of TCP cannot effectively deal with the problem of packet drops caused by mobility and shared channel contention among wireless nodes. In this paper, we present a cross-layer method, which adaptively adjusts the TCP maximum window size according to the number of RTS (Request To Send) retry counts of the MAC layer at the TCP sender, to control the number of TCP packets in the network and thus decrease the channel contention. Our simulation results show that this method can remarkably improve TCP throughput and its stability.
Haoxiang ZHANG Lin ZHANG Xiuming SHAN Victor O. K. LI
A novel Adaptive Resource-based Probabilistic Search algorithm (ARPS) for P2P networks is proposed in this paper. ARPS introduces probabilistic forwarding for query messages according to the popularity of the resource being searched. A mechanism is introduced to estimate the popularity and adjust the forwarding probability accordingly such that a tradeoff between search performance and cost can be made. Using computer simulations, we compare the performance of ARPS with several other search algorithms. It is shown that ARPS performs well under various P2P scenarios. ARPS guarantees a success rate above a certain level under all circumstances, and enjoys high and popularity-invariant search success rate. Furthermore, ARPS adapts well to the variation of popularity, resulting in high efficiency and flexibility.
Xingyang CHEN Lin ZHANG Yuhan DONG Xiuming SHAN Yong REN
The selection cooperation is a basic and attractive scheme of cooperative diversity in the multiple relays scenario. Most previous schemes of selection cooperation consist only one relay-stage in which one relay is selected to retransmit, and the signal from the selected relay is not utilized by other relays. In this paper, we introduce a two relay-stage selection cooperation scheme. The performance can be improved by letting all other relays to utilize the signal from the first selected relay to make another selection and retransmission in the second relay-stage. We derive the closed-form expression of the outage probability of the proposed scheme in the high SNR regime. Both theoretical and numerical results suggest that the proposed scheme can reduce the outage probability compared with the traditional scheme with only one relay-stage. Furthermore, we demonstrate that more than two relay-stage can not further reduce the outage probability. We also study the dependence of the proposed scheme on stage lengths and topology, and analyze the increased overhead.
Haoxiang ZHANG Lin ZHANG Xiuming SHAN Victor O.K. LI
The overall performance of P2P-based file sharing applications is becoming increasingly important. Based on the Adaptive Resource-based Probabilistic Search algorithm (ARPS), which was previously proposed by the authors, a novel probabilistic search algorithm with QoS guarantees is proposed in this letter. The algorithm relies on generating functions to satisfy the user's constraints and to exploit the power-law distribution in the node degree. Simulation results demonstrate that it performs well under various P2P scenarios. The proposed algorithm provides guarantees on the search performance perceived by the user while minimizing the search cost. Furthermore, it allows different QoS levels, resulting in greater flexibility and scalability.
Jian WANG Xiuming SHAN Yong REN
A new theoretical approach for the evaluation of the in-band nonlinear distortion effects on the performance of DS-CDMA systems is presented. Rather than widely used models of treating the effects of nonlinear distortion as additive Gaussian noise, the new approach is based on the asymptotic clipping and shot noise theories, which offer important insights into true nature of clipping process and can be further extended to many communications systems with high PAPR and peak-limited nonlinearities.
Liang WANG Xiuming SHAN Yong REN Zhengxin MA
In this article, we present a scattered pilot aided channel estimation and tracking technique for MIMO-OFDM systems. First we extend Li's estimation algorithm to scattered pilot-aided case. Then a scattered pilot-aided tracking scheme is developed to track the time-varying MIMO channel. The algorithms we present reduce the system overhead and channel estimation complexity to a low level with acceptable performance degradation. Simulations of a MIMO-OFDM system with four-transmit and four-receive antennas show that the new algorithm has better performance than Li's algorithm in time-varying MIMO channels.
Liang WANG Xiuming SHAN Yong REN
Carrier frequency and symbol timing errors may greatly degrade the performance of the orthogonal frequency division mulitplexing (OFDM) system, especially in multipath environment. In this paper, we explore the cyclostationarity of OFDM signals, which only relies on second order statistics, to estimate the synchronization offset. First, a coarse carrier frequency offset estimator for multipath environment is developed using the second order statistics of the received OFDM signal. It has a wide capture range though not accurate. Second, we introduce a new synchronization algorithm based on cyclostationarity and matched filter theories, which can get the maximal estimation SNR in multipath environment. Both estimators utilize channel state information to achieve better estimation performance and are non-pilot aided. They can be combined to form a whole OFDM synchronizer for multipath environment. Finally, simulations confirm the performance of the estimation algorithm.
Yang CAO Xiuming SHAN Yong REN
We present a simple decoding algorithm that modifies soft bit-flipping algorithm for decoding LDPC codes. In our method, a new parameter is explored to distinguish the variables (symbols) belonging to the same number of unsatisfied constraints. A token is also assigned in the method to avoid repeated flipping of the same variable, rather than using a constant taboo length. Our scheme shows a similar computational load as the taboo-based algorithm, while having a similar decoding performance as the belief propagation algorithm.
Xuedan ZHANG Jun HONG Lin ZHANG Xiuming SHAN Victor O. K. LI
This paper addresses the issue of transmission scheduling in wireless ad hoc networks. We propose a Time Division Multiple Access (TDMA) scheduling scheme based on edge coloring and probabilistic assignment, called CP-TDMA. We categorize the conflicts suffered by wireless links into two types: explicit conflicts and implicit conflicts, and utilize two different strategies to deal with them. Explicit conflicts are avoided completely by a simple distributed edge-coloring algorithm µ-M, and implicit conflicts are minimized by applying probabilistic time slot assignments to links. We evaluate CP-TDMA analytically and numerically, and find that CP-TDMA, which requires only local information exhibits a better performance than previous work.