1-2hit |
Yuichi SAWAHARA Yuya IKUTA Yangjun ZHANG Toshio ISHIZAKI Ikuo AWAI
The authors propose “Disk-repeater” as a new structure alternative to the conventional resonator repeater. Disk-repeater has a simple structure comprised of just copper plates and wire, non-resonant structure. First, coupling coefficients are measured as functions of disk diameter and wire length to characterize the basic performance of Disk-repeater. It is explained by several experimental evidences that Disk-repeater and resonator are not magnetically coupled but electrically coupled. It is also shown that the transmission distance extends dramatically longer than that of conventional resonator repeater. Further, two-dimensional arrangement, where multiple disks are connected, shows very high efficiency and uniform transmission characteristic regardless of positions of receiving resonator. Disk-repeater gives possibility of unprecedented versatile application with the simple structure.
Ikuo AWAI Yangjun ZHANG Tetsuya ISHIDA Tsuyoshi SUZUKI
A new unified method is proposed to calculate the basic resonator parameters, i.e., the resonant frequency, external Q, unloaded Q and coupling coefficient in the time domain. By exciting the resonator from a weakly coupled external circuit, one can inject only a narrow resonant spectrum from the broad spectrum of the excitation pulse. The resonant frequency is easily counted by the number of zero crossings of the internal field intensity, whereas the Q's are calculated by the decay rate of the field amplitude. The coupling coefficient computed by the energy exchange rate between two resonators completes the new time domain algorithm.