1-3hit |
Yasuyuki OZEKI Yuichi TAKUSHIMA Keiichi AISO Kazuro KIKUCHI
We design and demonstrate a high repetition-rate similariton generation system using normal dispersion fiber amplifiers (NDFA's). We numerically calculate the pulse evolution in NDFA's and clarify the condition to generate similariton pulses in a finite-length NDFA. Then we design the similariton generation system in consideration of the use of Erbium-doped fibers (EDF's) and show that a km-long fiber amplifier with low normal dispersion can generate a high repetition-rate similariton train from practical pico-second pulse sources. In the experiment, we demonstrate a 10-GHz similariton source using a 1.2-km-long EDF. For application to multi-wavelength light sources, we measure the bit-error rate of the spectrally sliced similariton, and show that it exhibits low-noise performance, which is attributed to the spectral flatness.
Shun TAKAHASHI Taichiro FUKUI Ryota TANOMURA Kento KOMATSU Yoshitaka TAGUCHI Yasuyuki OZEKI Yoshiaki NAKANO Takuo TANEMURA
The optical phased array (OPA) is an emerging non-mechanical device that enables high-speed beam steering by emitting precisely phase-controlled lightwaves from numerous optical antennas. In practice, however, it is challenging to drive all phase shifters on an OPA in a deterministic manner due to the inevitable fabrication-induced phase errors and crosstalk between the phase shifters. In this work, we fabricate a 16-element silicon photonic non-redundant OPA chip with integrated phase monitors and experimentally demonstrate accurate monitoring of the relative phases of light from each optical antenna. Under the beam steering condition, the optical phase retrieved from the on-chip phase monitors varies linearly with the steering angle, as theoretically expected.
Rainer HAINBERGER Yuki KOMAI Yasuyuki OZEKI Masahiro TSUCHIYA Kashiko KODATE Takeshi KAMIYA
By combining the technology of all-optical saturable absorbers and the diffractive optics, a scheme of all-optical time division demultiplexing module is investigated. Following authors' proposal, design, test fabrication of the optical platform in the previous paper, this paper focuses on the characterization of switching performance. Using a multiple quantum well saturable absorber of InGaAs/InAlAs composition, and gain switched semiconductor laser pulses of 25 ps pulse width, the switching function was demonstrated experimentally at wavelength of 1.55 µm. The switching on-off ratio was compared among 4 lens configuration, 2 lens configuration (2L) and free space, collinear geometry. No degradation was observed in the case of 2 lens configuration in comparison to collinear illumination. Thus the feasibility of all-optical switch module with power efficiency and high speed is predicted, under the assumption of the progress in sub-micron lithography.