1-7hit |
Yasuyuki SAKAI Kouichi SAKURAI
We discuss side channel leakage from modular reduction for NIST recommended domain parameters. FIPS 186-2 has 5 recommended prime fields. These primes have a special form which is referred to as generalized Mersenne prime. These special form primes facilitate especially efficient implementation. A typical implementation of efficient modular reduction with such primes includes conditional reduction. A conditional reduction in modular reduction can constitute an information channel on the secret exponent. Several researchers have produced unified code for elliptic point addition and doubling in order to avoid a simple power analysis (SPA). However, Walter showed that SPA still be possible if Montgomery multiplication with conditional reduction is implemented within the unified code. In this paper we show SPA on the modular reduction with NIST recommended primes, combining with the unified code for elliptic point operations. As Walter stated, our results also indicate that even if the unified codes are implemented for elliptic point operations, underlying field operations should be implemented in constant time. The unified approach in itself can not be a countermeasure for side channel attacks.
Yasuyuki SAKAI Kouichi SAKURAI
We consider the performance of hyperelliptic curve cryptosystems over the fields Fp vs. F2n. We analyze the complexity of the group law of the jacobians JC(Fp) and JC(F2n) and compare their performance taking into consideration the effectiveness of the word size (32-bit or 64-bit) of the applied CPU (Alpha and Pentium) on the arithmetic of the definition field. Our experimental results show that JC(F2n) is faster than JC(Fp) on an Alpha, whereas JC(Fp) is faster than JC(F2n) on a Pentium. Moreover, we investigate the algorithm of the jacobian and the definition-field arithmetic to clarify our results from a practical point of view, with theoretical analysis.
Quantum cryptography has become a subject of widespread interest. In particular, quantum key distribution, which provides a secure key agreement by using quantum systems, is believed to be the most important application of quantum cryptography. Quantum key distribution has the potential to achieve the "unconditionally" secure infrastructure. We also have many cryptographic tools that are based on "modern cryptography" at the present time. They are being used in an effort to guarantee secure communication over open networks such as the Internet. Unfortunately, their ultimate efficacy is in doubt. Quantum key distribution systems are believed to be close to practical and commercial use. In this paper, we discuss what we should do to apply quantum cryptography to our communications. We also discuss how quantum key distribution can be combined with or used to replace cryptographic tools based on modern cryptography.
Yasuyuki SAKAI Kouichi SAKURAI
We introduce efficient algorithms for scalar multiplication on elliptic curves defined over FP. The algorithms compute 2k P directly from P, where P is a random point on an elliptic curve, without computing the intermediate points, which is faster than k repeated doublings. Moreover, we apply the algorithms to scalar multiplication on elliptic curves, and analyze their computational complexity. As a result of their implementation with respect to affine (resp. weighted projective) coordinates, we achieved an increased performance factor of 1.45 (45%) (resp. 1.15 (15%)) in the scalar multiplication of the elliptic curve of size 160-bit.
Yasuyuki SAKAI Kouichi SAKURAI
In this paper we propose a new side channel attack, where exponent recodings for public key cryptosystems such as RSA and ECDSA are considered. The known side channel attacks and countermeasures for public key cryptosystems were against the main stage (square and multiply stage) of the modular exponentiation (or the point multiplication on an elliptic curve). We have many algorithms which achieve fast computation of exponentiations. When we compute an exponentiation, the exponent recoding has to be carried out before the main stage. There are some exponent recoding algorithms including conditional branches, in which instructions depend on the given exponent value. Consequently exponent recoding can constitute an information channel, providing the attacker with valuable information on the secret exponent. In this paper we show new algorithms of attack on exponent recoding. The proposed algorithms can recover the secret exponent, when the width-w NAF and the unsigned/signed fractional window representation are used.
Yasuyuki SAKAI Kouichi SAKURAI
We discuss multidoubling methods for efficient elliptic scalar multiplication. The methods allows computation of 2k P directly from P without computing the intermediate points, where P denotes a randomly selected point on an elliptic curve. We introduce algorithms for elliptic curves with Montgomery form and Weierstrass form defined over finite fields with characteristic greater than 3 in terms of affine coordinates. These algorithms are faster than k repeated doublings. Moreover, we apply the algorithms to scalar multiplication on elliptic curves and analyze computational complexity. As a result of our implementation with respect to the Montgomery and Weierstrass forms in terms of affine coordinates, we achieved running time reduced by 28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size 160-bit over finite fields with characteristic greater than 3.
Yasuyuki SAKAI Kouichi SAKURAI
The computational performance of cryptographic protocols using an elliptic curve strongly depends on the efficiency of the scalar multiplication. Some elliptic curve based cryptographic protocols, such as signature verification, require computation of multi scalar multiplications of kP+lQ, where P and Q are points on an elliptic curve. An efficient way to compute kP+lQ is to compute two scalar multiplications simultaneously, rather than computing each scalar multiplication separately. We introduce new efficient algorithms for simultaneous scalar multiplication on an elliptic curve. We also give a detailed analysis of the computational efficiency of our proposed algorithms.