Author Search Result

[Author] Ye Hoon LEE(7hit)

1-7hit
  • Power and Rate Adaptations in Multicarrier DS/CDMA Communications over Rayleigh Fading Channels

    Ye Hoon LEE  Sun Yong KIM  Seokho YOON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3598-3605

    We consider power and rate adaptations in multicarrier (MC) direct-sequence code-division multiple-access (DS/CDMA) communications under the assumption that channel state information is provided at both the transmitter and the receiver. We propose, as a power allocation strategy in the frequency domain, to transmit each user's DS waveforms over the user's sub-band with the largest channel gain, rather than transmitting identical DS waveforms over all sub-bands. We then adopt channel inversion power adaptation in the time domain, where the target user's received power level maintains at a fixed value. We also investigate rate adaptation in the time domain, where the data rate is adapted such that a desired transmission quality is maintained. We analyze the BER performance of the proposed power and rate adaptations with fixed average transmission power, and show that power adaptation in both the frequency and the time domains or combined power adaptation in the frequency domain and rate adaptation in the time domain make significant performance improvement over the power adaptation in the frequency domain only. We also compare the performance of the proposed power and rate adaptation schemes in MC-DS/CDMA systems to that of power and rate adapted single carrier DS/CDMA systems with RAKE receiver.

  • Performance of Closed-Loop Transmit Antenna Diversity with Channel Estimation Errors and Feedback Delay

    Nam-Soo KIM  Ye Hoon LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3289-3294

    The effect of feedback delay and channel estimation error on closed-loop transmit diversity (CTD) systems is investigated in time-selective Rayleigh fading channels. Based on a minimum mean square error (MMSE) channel estimator, the variance of the estimation error is formulated in terms of fading index and the number of transmit antennas. A bit error rate (BER) expression for the CTD system is analytically derived as a function of channel estimation error, feedback delay, and fading index. It is shown that the BER performance of the CTD system improves as the length of training symbols increases and/or the frame length decreases. In the CTD system, more accurate channel estimation scheme is required to achieve its full gain as the number of employed transmit antennas increases. It is also found that the CTD system is applicable to the slowly moving channel environments, such as pedestrians, but not for fast moving vehicles.

  • Power, Rate and Hopping Adaptations in Hybrid DS/FH CDMA Communications over Slow Rayleigh Fading Channels

    Ye Hoon LEE  Dong Ho KIM  Jaekwon KIM  Cheolwoo YOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1799-1806

    We consider a hybrid direct-sequence frequency-hopped (DS/FH) code division multiple access (CDMA) communication system, where the transmission power, data rate (i.e. spreading gain), and hopping frequency are adapted relative to the channel variations. Instead of random frequency hopping, hopping pattern is adaptively adjusted to obtain the maximum channel gain among available frequency slots. Transmission power and/or data rate are also adapted such that a target transmission quality is maintained. It is shown that the proposed scheme provides a higher average data rate than pure DS/CDMA with power and rate adaptations, subject to the identical bandwidth and average transmission power constraints.

  • Space-Time Domain Optimization of Transmitter Weights in Closed-Loop Transmit Antenna Diversity

    Ye Hoon LEE  Nam-Soo KIM  Seung Young PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4121-4124

    The optimal antenna weighting scheme that minimizes the average bit error rate in a closed-loop transmit antenna diversity system is investigated under the assumption that channel state information is provided at both the transmitter and the receiver. A closed-form expression for the optimal transmitter weights is derived with a fixed average transmit power constraint. Also, the effect of limited peak transmit power on the performance of the optimal weighting method is analyzed. Base on this analysis, it is shown that the proposed transmitter weights yield significant performance improvements over the conventional weights on the wide range of practical system parameters.

  • Adaptive Adjustment of Integration Time for BPSK Based Ultra-Wideband Frequency Hopping Receiver

    Jin Man KWON  Ye Hoon LEE  Nam-Soo KIM  Hwang Soo LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1848-1851

    The frequency hopping (FH) based ultra-wideband (UWB) communication system divides its available frequency spectrum into several sub-bands, which leads to inherent disparities between carrier frequencies of each sub-band. Since the propagation loss is proportional to the square of the transmission frequency, the propagation loss on the sub-band having the highest carrier frequency is much larger than that on the sub-band having the lowest carrier frequency, resulting in disparities between received signal powers on each sub-band, which in turn leads to a bit error rate (BER) degradation in the FH UWB system. In this paper we propose an adaptive receiver for FH based UWB communications, where the integration time is adaptively adjusted relative to the hopping carrier frequency, which reduces the disparity between the received signal energies on each sub-band. Such compensation for lower received powers on sub-bands having higher carrier frequency leads to an improvement on the total average BER of the entire FH UWB communication system. We analyze the performance of the proposed reception scheme in Nakagami fading channels, and it is shown that the performance gain provided by the proposed receiver is more significant as the Nakagami fading index m increases (i.e., better channel conditions).

  • Adaptive DS/CDMA Packet Radio Communications over Indoor Multipath Fading Channels

    Ye Hoon LEE  Seokho YOON  Sun Yong KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1162-1170

    In this paper, we propose an adaptive data transmission scheme for DS/CDMA packet radio communication systems in bandlimited indoor multipath fading channels. We first analyze the relationship between the code rate and the processing gain (defined as the number of chips per coded bit) in maximizing the normalized throughput in connection with the channel state of the indoor multipath fading channels. One observation made is that the maximum throughput with BPSK modulation is attained when the code rate is chosen as low as possible irrespective of the channel state, and the processing gain is increased (decreased) as the channel becomes worse (better). The other observation made is that when DPSK modulation is employed, there exists an optimal combination of the code rate and the processing gain in maximizing the normalized throughput for each channel state. Based on these observations, we propose to adapt the processing gain and/or code rate according to the fading conditions in order to maximize the normalized throughput. We analyze the performance of the proposed scheme and compare it with the non-adaptive data transmission scheme. Our results show that the adaptive transmission scheme yields a significant performance improvement over the nonadaptive scheme, and increasing the adaptation level is more effective as the channel gets worse, but the 3-state adaptation seems to be practically optimum.

  • On the Optimal Chip Rate of Adaptive Power and Rate DS/CDMA Communication Systems in Nakagami Fading Channels

    Ye Hoon LEE  Dong Ho KIM  Hong Jik KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:9
      Page(s):
    3798-3801

    We investigate the optimal chip rate of power or rate adapted direct-sequence code division multiple access (DS/CDMA) communication systems in Nakagami fading channels. We find that the optimal chip rate that maximizes the spectral efficiency depends upon both the channel parameters, such as multipath intensity profile (MIP) and line-of-sight (LOS) component, and the adaptation scheme itself. With the rate adaptation, the optimal chip rate is less than 1/Tm irrespective of the channel parameters, where Tm is multipath delay spread. This indicates that with the rate adaptation, correlation receiver achieves higher spectral efficiency than RAKE receiver. With the power adaptation, however, the optimal chip rate and the corresponding number of tabs in RAKE receiver are sensitive to MIP and LOS component.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.