1-4hit |
Yoichi HINAMOTO Shotaro NISHIMURA
A state-space approach for adaptive second-order IIR notch digital filters is explored. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. The stability and parameter-estimation bias are then analyzed by employing a first-order linear dynamical system. As a consequence, it is clarified that the resulting parameter estimate is unbiased. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the adaptive state-space notch digital filter and bias analysis of parameter estimation.
This paper deals with the problem of minimizing roundoff noise and pole sensitivity simultaneously subject to l2-scaling constraints for state-space digital filters. A novel measure for evaluating roundoff noise and pole sensitivity is proposed, and an efficient technique for minimizing this measure by jointly optimizing state-space realization and error feedback is explored, namely, the constrained optimization problem at hand is converted into an unconstrained problem and then the resultant problem is solved by employing a quasi-Newton algorithm. A numerical example is presented to demonstrate the validity and effectiveness of the proposed technique.
Yoichi HINAMOTO Shotaro NISHIMURA
This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.
Yoichi HINAMOTO Shotaro NISHIMURA
This paper deals with a state-space approach for adaptive second-order IIR notch digital filters with constrained poles and zeros. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. Then, stability and parameter-estimation bias are analyzed for the simplified iterative algorithm. A numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive state-space notch digital filter and parameter-estimation bias analysis.