1-4hit |
Yongchul KIM Mihail L. SICHITIU
WiMAX (IEEE 802.16) has emerged as a promising radio access technology for providing high speed broadband connectivity to subscribers over large geographic regions. New enhancements allow deployments of relay stations (RSs) that can extend the coverage of the base station (BS), increase cell capacity, or both. In this paper, we consider the placement of transparent RSs that maximize the cell capacity. We provide a closed-form approximation for the optimal location of RS inside a cell. A numerical analysis of a number of case studies validates the closed-form approximation. The numerical results show that the closed-form approximation is reasonably accurate.
In this paper, we propose a selective membership inference attack method that determines whether certain data corresponding to a specific class are being used as training data for a machine learning model or not. By using the proposed method, membership or non-membership can be inferred by generating a decision model from the prediction of the inference models and training the confidence values for the data corresponding to the selected class. We used MNIST as an experimental dataset and Tensorflow as a machine learning library. Experimental results show that the proposed method has a 92.4% success rate with 5 inference models for data corresponding to a specific class.
Hyun KWON Yongchul KIM Hyunsoo YOON Daeseon CHOI
We propose new CAPTCHA image generation systems by using generative adversarial network (GAN) techniques to strengthen against CAPTCHA solvers. To verify whether a user is human, CAPTCHA images are widely used on the web industry today. We introduce two different systems for generating CAPTCHA images, namely, the distance GAN (D-GAN) and composite GAN (C-GAN). The D-GAN adds distance values to the original CAPTCHA images to generate new ones, and the C-GAN generates a CAPTCHA image by composing multiple source images. To evaluate the performance of the proposed schemes, we used the CAPTCHA breaker software as CAPTCHA solver. Then, we compared the resistance of the original source images and the generated CAPTCHA images against the CAPTCHA solver. The results show that the proposed schemes improve the resistance to the CAPTCHA solver by over 67.1% and 89.8% depending on the system.
Hyun KWON Yongchul KIM Ki-Woong PARK Hyunsoo YOON Daeseon CHOI
Deep neural networks (DNNs) are widely used in many applications such as image, voice, and pattern recognition. However, it has recently been shown that a DNN can be vulnerable to a small distortion in images that humans cannot distinguish. This type of attack is known as an adversarial example and is a significant threat to deep learning systems. The unknown-target-oriented generalized adversarial example that can deceive most DNN classifiers is even more threatening. We propose a generalized adversarial example attack method that can effectively attack unknown classifiers by using a hierarchical ensemble method. Our proposed scheme creates advanced ensemble adversarial examples to achieve reasonable attack success rates for unknown classifiers. Our experiment results show that the proposed method can achieve attack success rates for an unknown classifier of up to 9.25% and 18.94% higher on MNIST data and 4.1% and 13% higher on CIFAR10 data compared with the previous ensemble method and the conventional baseline method, respectively.