1-2hit |
Konlakorn WONGAPTIKASEREE Panida YOMABOOT Kantinee KATCHAPAKIRIN Yongyos KAEWPITAKKUN
Depression is a major mental health problem in Thailand. The depression rates have been rapidly increasing. Over 1.17 million Thai people suffer from this mental illness. It is important that a reliable depression screening tool is made available so that depression could be early detected. Given Facebook is the most popular social network platform in Thailand, it could be a large-scale resource to develop a depression detection tool. This research employs techniques to develop a depression detection algorithm for the Thai language on Facebook where people use it as a tool for sharing opinions, feelings, and life events. To establish the reliable result, Thai Mental Health Questionnaire (TMHQ), a standardized psychological inventory that measures major mental health problems including depression. Depression scale of the TMHQ comprises of 20 items, is used as the baseline for concluding the result. Furthermore, this study also aims to do factor analysis and reduce the number of depression items. Data was collected from over 600 Facebook users. Descriptive statistics, Exploratory Factor Analysis, and Internal consistency were conducted. Results provide the optimized version of the TMHQ-depression that contain 9 items. The 9 items are categorized into four factors which are suicidal ideation, sleep problems, anhedonic, and guilty feelings. Internal consistency analysis shows that this short version of the TMHQ-depression has good to excellent reliability (Cronbach's alpha >.80). The findings suggest that this optimized TMHQ-depression questionnaire holds a good psychometric property and can be used for depression detection.
Yongyos KAEWPITAKKUN Kiyoaki SHIRAI
Sentiment analysis of microblogging has become an important classification task because a large amount of user-generated content is published on the Internet. In Twitter, it is common that a user expresses several sentiments in one tweet. Therefore, it is important to classify the polarity not of the whole tweet but of a specific target about which people express their opinions. Moreover, the performance of the machine learning approach greatly depends on the domain of the training data and it is very time-consuming to manually annotate a large set of tweets for a specific domain. In this paper, we propose a method for sentiment classification at the target level by incorporating the on-target sentiment features and user-aware features into the classifier trained automatically from the data createdfor the specific target. An add-on lexicon, extended target list, and competitor list are also constructed as knowledge sources for the sentiment analysis. None of the processes in the proposed framework require manual annotation. The results of our experiment show that our method is effective and improves on the performance of sentiment classification compared to the baselines.