1-3hit |
Seiichi KOJIMA Momoka HARADA Yoshiaki UEDA Noriaki SUETAKE
In this letter, we propose a new color quantization method suppressing saturation decrease. In the proposed method, saturation-based weight and intensity-based weight are used so that vivid colors are selected as the representative colors preferentially. Experiments show that the proposed method tends to select vivid colors even if they occupy only a small area in the image.
Mashiho MUKAIDA Yoshiaki UEDA Noriaki SUETAKE
Recently, a lot of low-light image enhancement methods have been proposed. However, these methods have some problems such as causing fine details lost in bright regions and/or unnatural color tones. In this paper, we propose a new low-light image enhancement method to cope with these problems. In the proposed method, a pixel is represented by a convex combination of white, black, and pure color. Then, an equi-hue plane in RGB color space is represented as a triangle whose vertices correspond to white, black, and pure color. The visibility of low-light image is improved by applying a modified gamma transform to the combination coefficients on an equi-hue plane in RGB color space. The contrast of the image is enhanced by the histogram specification method using the histogram smoothed by a filter with a kernel determined based on a gamma distribution. In the experiments, the effectiveness of the proposed method is verified by the comparison with the state-of-the-art low-light image enhancement methods.
Yoshiaki UEDA Seiichi KOJIMA Noriaki SUETAKE
In this letter, we propose a color quantization method based on saliency. In the proposed method, the salient colors are selected as representative colors preferentially by using saliency as weights. Through experiments, we verify the effectiveness of the proposed method.