1-3hit |
Yukihiro BANDOH Seishi TAKAMURA Hirohisa JOZAWA Yoshiyuki YASHIMA
Higher frame-rates are essential in achieving more realistic representations. Since increasing the frame-rate increases the total amount of information, efficient coding methods are required. However, the statistical properties of such data, needed for designing sufficiently powerful encoders, have not been clarified. Conventional studies on encoding high frame-rate sequences do not consider the effect on the encoding bit-rate of the motion blur generated by the shutter being open. When the open interval of the shutter in the image pickup apparatus increases, motion blur occurs, which is known as the integral phenomenon. The integral phenomenon changes the statistical properties of the video signal. This paper derives, for high frame-rate video, a mathematical model that quantifies the relationship between frame-rate and bit-rate; it incorporates the effect of the low-pass filtering induced by the open shutter. A coding experiment confirms the validity of the mathematical model.
Takeshi YOSHITOME Ken NAKAMURA Jiro NAGANUMA Yoshiyuki YASHIMA
We propose a flexible video CODEC system for super-high-resolution videos such as those utilizing 4k2k pixel. It uses the spatially parallel encoding approach and has sufficient scalability for the target video resolution to be encoded. A video shift and padding function has been introduced to prevent the image quality from being degraded when different active line systems are connected. The switchable cascade multiplexing function of our system enables various super-high-resolutions to be encoded and super-high-resolution video streams to be recorded and played back using a conventional PC. A two-stage encoding method using the complexity of each divided image has been introduced to equalize encoding quality among multiple divided videos. System Time Clock (STC) sharing has also been implemented in this CODEC system to absorb the disparity in the times streams are received between channels. These functions enable highly-efficient, high-quality encoding for super-high-resolution video.
Yukihiro BANDOH Kazuya HAYASE Seishi TAKAMURA Kazuto KAMIKURA Yoshiyuki YASHIMA
Realistic representations using extremely high quality images are becoming increasingly popular. For example, digital cinemas can now display moving pictures composed of high-resolution digital images. Although these applications focus on increasing the spatial resolution only, higher frame-rates are being considered to achieve more realistic representations. Since increasing the frame-rate increases the total amount of information, efficient coding methods are required. However, its statistical properties are not clarified. This paper establishes for high frame-rate video a mathematical model of the relationship between frame-rate and bit-rate. A coding experiment confirms the validity of the mathematical model.