Author Search Result

[Author] Young Jin NAM(5hit)

1-5hit
  • A Self-Adjusting Destage Algorithm with High-Low Water Mark in Cached RAID5

    Young Jin NAM  Chanik PARK  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2527-2535

    The High-Low Water Mark destage (HLWM) algorithm is widely used to enable cached RAID5 to flush dirty data from its write cache to disks due to the simplicity of its operations. It starts and stops a destaging process based on the two thresholds that are configured at the initialization time with the best knowledge of its underlying storage performance capability and its workload pattern which includes traffic intensity, access patterns, etc. However, each time the current workload varies from the original, the thresholds need to be re-configured with the changed workload. This paper proposes an efficient destage algorithm which automatically re-configures its initial thresholds according to the changed traffic intensity and access patterns, called adaptive thresholding. The core of adaptive thresholding is to define the two thresholds as the multiplication of the referenced increasing and decreasing rates of the write cache occupancy level and the time required to fill and empty the write cache. We implement the proposed algorithm upon an actual RAID system and then verify the ability of the auto-reconfiguration with synthetic workloads having a different level of traffic intensity and access patterns. Performance evaluations under well-known traced workloads reveal that the proposed algorithm reduces disk IO traffic by about 12% with a 6% increase in the overwrite ratio compared with the HLWM algorithm.

  • Adaptive Multi-Path Routing with Guaranteed Target-Delivery Ratio of Critical Events in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E93-B No:2
      Page(s):
    392-395

    Wireless sensor networks are subject to node and link failures for a variety of reasons. This paper proposes a k-disjoint-path routing algorithm that varies the number of disjoint paths (k) in order to meet a target-delivery ratio of critical events and to reduce energy consumption. The proposed algorithm sends packets to the base station through a single path without the occurrence of critical events, however, it sends packets to the base station through k disjoint paths (k>1) under the occurrence of critical events, where k is computed from a well-defined fault model. The proposed algorithm detects the occurrence of critical events by monitoring collected data patterns. The simulation results reveal that the proposed algorithm is more resilient to random node failure and patterned failure than other routing algorithms, and it also decreases energy consumption much more than the multi-path and path-repair algorithms.

  • Position-Based k-Disjoint Path Routing for Reliable Data Gathering in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2658-2660

    This paper proposes a novel routing algorithm that constructs position-based k-disjoint paths to realize greater resiliency to patterned failure. The proposed algorithm constructs k-disjoint paths that are spatially distributed by using the hop-count based positioning system. Simulation results reveal that the proposed algorithm is more resilient to patterned failure than other routing algorithms, while it has low power consumption and small delay.

  • Forest Fire Monitoring with an Adaptive In-Network Aggregation Scheduling in Wireless Sensor Networks

    Jang Woon BAEK  Young Jin NAM  Dae-Wha SEO  

     
    LETTER-Network

      Vol:
    E95-B No:8
      Page(s):
    2650-2653

    In this paper, we propose a novel in-network aggregation scheduling scheme for forest fire monitoring in a wireless sensor network. This adaptively configures both the timeout and the collecting period according to the potential level of a fire occurrence. At normal times, the proposed scheme decreases a timeout that is a wait time for packets sent from child nodes and makes the collecting period longer. That reduces the dissipated energy of the sensor node. Conversely, the proposed scheme increases the timeout and makes the collecting period shorter during fire occurrences in order to achieve more accurate data aggregation and early fire detection.

  • Amortized Linux Ext3 File System with Fast Writing after Editing for WinXP-Based Multimedia Application

    Seung-Wan JUNG  Young Jin NAM  Dae-Wha SEO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:11
      Page(s):
    2259-2270

    Recently, the need for multimedia devices, such as mobile phones, digital TV, PMP, digital camcorders, digital cameras has increased. These devices provide various services for multimedia file manipulation, allowing multimedia contents playback, multimedia file editing, etc. Additionally, digital TV provides a recorded multimedia file copy to a portable USB disk. However, Linux Ext3 file system, as employed by these devices, has a lot of drawbacks, as it required a considerable amount of time and disk I/Os to store large-size edited multimedia files, and it is hard to access for typical PC users. Therefore, in this paper a design and implementation of an amortized Ext3 with FWAE (Fast Writing-After-Editing) for WinXP-based multimedia applications is described. The FWAE is a fast and efficient multimedia file editing/storing technique for the Ext3 that exploits inode block pointer re-setting and shared data blocks by simply modifying metadata information. Individual experiments in this research show that the amortized Ext3 with FWAE for WinXP not only dramatically improves written performance of the Ext3 by 16 times on average with various types of edited multimedia files but also notably reduces the amount of consumed disk space through data block sharing. Also, it provides ease and comfort to use for typical PC users unfamiliar with Linux OS.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.