1-3hit |
Yizhen JIA Xiaoming TAO Youzheng WANG Yukui PEI Jianhua LU
Base Station (BS) cooperation has been considered as a promising technology to mitigate co-channel interference (CCI), yielding great capacity improvement in cellular systems. In this paper, by combining frequency domain cooperation and space domain cooperation together, we design a new CCI mitigation scheme to maximize the total utility for a multi-cell OFDMA network. The scheme formulates the CCI mitigation problem as a mixture integer programming problem, which involves a joint user-set-oriented subcarrier assignment and power allocation. A computationally feasible algorithm based on Lagrange dual decomposition is derived to evaluate the optimal value of the problem. Moreover, a low-complexity suboptimal algorithm is also presented. Simulation results show that our scheme outperforms the counterparts incorporating BS cooperation in a single domain considerably, and the proposed low-complexity algorithm achieves near optimal performance.
Hui DENG Xiaoming TAO Youzheng WANG Jianhua LU
Efficient resource allocation for delay-sensitive traffic, such as telephony and video streaming, in Orthogonal Frequency Division Multiple Access (OFDMA) networks is needed to increase system performance. In our system, users try to achieve a low queuing delay and buffer space usage by competing for transmission over the subchannels. We formulate this problem as a bargaining game and use the Nash Bargaining Solution (NBS) to realize a fair and efficient subchannel allocation for the users. Simulation results show performance improvements, with regard to packet dropping and delay distribution, over other algorithms.
Yueguang BIAN Youzheng WANG Jing WANG
In this letter, we propose a new modification to the belief propagation (BP) decoding algorithm for Finite-Geometry low-density parity-check (LDPC) codes. The modification is based on introducing feedback into the iterative process, which can break the oscillations of bit log-likelihood ratio (LLR) values. Simulations show that, with a given maximum iteration, the "feedback BP" (FBP) algorithm can achieve better performance than the conventional belief propagation algorithm.