1-4hit |
Yu QIU Zenggang DU Kiichi URAHAMA
We propose, in this letter, a new type of image denoising filter using a data analysis technique. We deal with pixels as data and extract the most dominant cluster from pixels in the filtering window. We output the centroid of the extracted cluster. We demonstrate that this graph-spectral filter can effectively reduce a mixture of Gaussian and random impulsive noise.
We present the PCA self-cross bilateral filter for denoising multi-modal images. We firstly apply the principal component analysis for input multi-modal images. We next smooth the first principal component with a preliminary filter and use it as a supplementary image for cross bilateral filtering of input images. Among some preliminary filters, the undecimated wavelet transform is useful for effective denoising of various multi-modal images such as color, multi-lighting and medical images.
We present a simple technique for enhancing multi-modal images. The unsharp masking (UM) is at first nonlinearized to prevent halos around large edges. This edge-preserving UM is then extended to cross-sharpening of multi-modal images where a component image is sharpened with the aid of more clear edges in another component image.
In this paper, we present a joint multi-patch and multi-task convolutional neural networks (JMM-CNNs) framework to learn more descriptive and robust face representation for face recognition. In the proposed JMM-CNNs, a set of multi-patch CNNs and a feature fusion network are constructed to learn and fuse global and local facial features, then a multi-task learning algorithm, including face recognition task and pose estimation task, is operated on the fused feature to obtain a pose-invariant face representation for the face recognition task. To further enhance the pose insensitiveness of the learned face representation, we also introduce a similarity regularization term on features of the two tasks to propose a regularization loss. Moreover, a simple but effective patch sampling strategy is applied to make the JMM-CNNs have an end-to-end network architecture. Experiments on Multi-PIE dataset demonstrate the effectiveness of the proposed method, and we achieve a competitive performance compared with state-of-the-art methods on Labeled Face in the Wild (LFW), YouTube Faces (YTF) and MegaFace Challenge.