1-2hit |
Tsukasa OOISHI Yuichiro KOMIYA Kei HAMADE Mikio ASAKURA Kenichi YASUDA Kiyohiro FURUTANI Tetsuo KATO Hideto HIDAKA Hideyuki OZAKI
This paper proposes a low voltage operation technique for a voltagedown converter(VDC) using a mixed-mode VDC(MM-VDC), that combines an analog VDC and a digital VDC, and provides high frequency application using an impedance adjustment circuitry (LAC). The MM-VDC operates with a small response delay and a large supply current. Moreover, the IAC is adopted to the MM-VDC for wide range frequency operation under low voltage conditions. The IAC can change the supply current capability in accordance with the load operation frequency to avoid the overshoot and undershoot problpems caused by the unmatched supply current. A 64 Mb-DRAM test device operated with the MM-VDC achieves well-controlled internal voltage (VCI) level and achieves high frequency operation. These systems, the MM-VDC and the ILVDC, can be applicable for both low voltage and high frequency operation.
Tsukasa OOISHI Yuichiro KOMIYA Kei HAMADE Mikio ASAKURA Kenichi YASUDA Kiyohiro FURUTANI Hideto HIDAKA Hiroshi MIYAMOTO Hideyuki OZAKI
This paper describes DRAM array driving techniques and the parameter scaling techniques for a low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. A temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current of a memory cell transistor (MC-Tr), and a distributed BSG (DBSG) scheme and a column decoded sensing (CDS) scheme achieve the effective scaling. These schemes can set the DRAM array free from a leakage current problem and free them from an influence of temperature variations. Therefore, parameters for the MC-Tr, threshold voltage (Vth), and the boosted voltage for the gate bias can be scaled down, and it is possible to determine the Vth of the MC-Tr easy (0.45 V at K = 0.4) for the satisfaction of the small leakage current, for the high speed and stable operation, and for the high reliability (VPP is below 2 VCC). They are applicable to the subquarter micron DRAM's of 256 Mb and more.