Author Search Result

[Author] Yuta NAKAYAMA(1hit)

1-1hit
  • A Simple Class of Binary Neural Networks and Logical Synthesis

    Yuta NAKAYAMA  Ryo ITO  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:9
      Page(s):
    1856-1859

    This letter studies learning of the binary neural network and its relation to the logical synthesis. The network has the signum activation function and can approximate a desired Boolean function if parameters are selected suitably. In a parameter subspace the network is equivalent to the disjoint canonical form of the Boolean functions. Outside of the subspace, the network can have simpler structure than the canonical form where the simplicity is measured by the number of hidden neurons. In order to realize effective parameter setting, we present a learning algorithm based on the genetic algorithm. The algorithm uses the teacher signals as the initial kernel and tolerates a level of learning error. Performing basic numerical experiments, the algorithm efficiency is confirmed.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.