1-3hit |
Wireless LANs have been used for realizing fully-distributed users in a multimedia environment that has the ability to provide real-time bursty traffic (such as voice or video) and data traffic. In this paper, we present a new realistic and detailed system model and a new effective analysis for the performance of wireless LANs which support multimedia communication with non-persistent carrier sense multiple access with collision avoidance (CSMA/CA) protocol. In this CSMA/CA model, a user with a packet ready to transmit initially sends some pulse signals with random intervals within a collision avoidance period before transmitting the packet to verify a clear channel. The system model consists of a finite number of users to efficiently share a common channel. Each user can be a source of both voice traffic and data traffic. The time axis is slotted, and a frame has a large number of slots and includes two parts: the collision avoidance period and the packet transmission period. A discrete-time Markov process is used to model the system operation. The number of slots in a frame can be arbitrary, dependent on the chosen lengths of the collision avoidance period and packet transmission period. Numerical results are shown in terms of channel utilization and average packet delay for different packet generation rates. They indicate that the network performance can be improved by adequate choice of ratios between the collision avoidance period and transmission period, and the pulse transmission probability.
In this paper, we present an exact analysis and an efficient matrix-analytic procedure to numerically evaluate the performance of cellular mobile networks with hand-off. In high-capacity micro-cell cellular radio communication networks, a cell boundary crossed by moving users can generate many hand-off attempts. This paper considers such a priority scheme that some channels and buffers are reserved for hand-off calls to reduce the forced termination of calls in progress. Performance characteristics we obtained include blocking probability, channel utilization, average queue length and average waiting time for hand-off calls. Using the matrix-analytic solution for the stationary state probability distribution, we also derive the probability distribution of the waiting time of a hand-off call. Numerical results show how priority can be provided to hand-off calls according to the number of reserved channels and buffer size. They also clarify the effect of the hand-off priority scheme on the standard deviation of waiting time of a hand-off call.
To satisfy huge service demand and multi-traffic requirements with limited bandwidth, this paper proposes two different procedures of multi-channel multiple access schemes with the slotted ALOHA operation for both data and voice traffic and presents an exact analysis to numerically evaluate the performance of the systems. In scheme I, there is no limitation on access between data transmissions and voice transmissions, i.e., all channels can be accessed by all transmissions. In scheme II, a channel reservation policy is applied, where a number of channels are used exclusively for voice packets while the remaining channels are used for both data packets and voice packets. We call the system using scheme I "Non-reservation system" and call the system using scheme II "Reservation system. " Performance characteristics we obtained include loss probability for voice traffic, average packet delay for data traffic and channel utilization for both traffic. The performance of the schemes and the effects of the design parameters are numerically evaluated and compared to a wide-bandwidth conventional single-channel slotted ALOHA system with single data traffic. The analysis presented in this paper will be not only useful for the performance evaluation and the optimum design of multi-channel multi-traffic systems in wireless environments, but also applicable to evaluate other performance measures in priority networks, cellular mobile radio networks or multi-hop wireless networks.