Author Search Result

[Author] Yutaka OHSAWA(3hit)

1-3hit
  • Safe-Region Generation Method for Versatile Continuous Vicinity Queries in the Road Network Distance

    Tin Nilar WIN  Htoo HTOO  Yutaka OHSAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:2
      Page(s):
    472-480

    This paper proposes a fast safe-region generation method for several kinds of vicinity queries including set k nearest neighbor (NN) queries, ordered kNN queries, reverse kNN queries, and distance range queries. When a user is driving a car on a road network, he/she wants to know about objects located in the vicinity of the car. However, the result changes according to the movement of the car, and therefore, the user needs to request up-to-date result to the server. On the other hand, frequent requests for up-to-date results cause heavy loadings on the server. To cope with this problem efficiently, the idea of the safe-region has been proposed, however, it takes long processing time in existing works. This paper proposes a fast generation method of the safe-region applicable to several types of vicinity queries. Through experimental evaluations, we demonstrate that the proposed method outperforms the existing algorithms in the processing time by one or two orders of magnitude.

  • Incremental Single-Source Multi-Target A* Algorithm for LBS Based on Road Network Distance

    Htoo HTOO  Yutaka OHSAWA  Noboru SONEHARA  Masao SAKAUCHI  

     
    PAPER-Spatial DB

      Vol:
    E96-D No:5
      Page(s):
    1043-1052

    Searching for the shortest paths from a query point to several target points on a road network is an essential operation for several types of queries in location-based services. This search can be performed using Dijkstra's algorithm. Although the A* algorithm is faster than Dijkstra's algorithm for finding the shortest path from a query point to a target point, the A* algorithm is not so fast to find all paths between each point and the query point when several target points are given. In this case, the search areas on road network overlap for each search, and the total number of operations at each node is increased, especially when the number of query points increases. In the present paper, we propose the single-source multi-target A* (SSMTA*) algorithm, which is a multi-target version of the A* algorithm. The SSMTA* algorithm guarantees at most one operation for each road network node, and the searched area on road network is smaller than that of Dijkstra's algorithm. Deng et al. proposed the LBC approach with the same objective. However, several heaps are used to manage the search area on the road network and the contents in each heap must always be kept the same in their method. This operation requires much processing time. Since the proposed method uses only one heap, such content synchronization is not necessary. The present paper demonstrates through empirical evaluations that the proposed method outperforms other similar methods.

  • A Geographic Differential Script File Method for Distributed Geographic Information Systems

    Kyungwol KIM  Yutaka OHSAWA  

     
    PAPER-Spatial and Temporal Databases

      Vol:
    E82-D No:1
      Page(s):
    113-119

    This study presents a method that can be used to manage individual pieces of information in large scale distributed geographic information systems (GIS). In a distributed GIS, ordinary users usually cannot alter any of the contents on the server. The method in this study can be used to alter the content or add individual datums onto these types of non-write-permitted data sets. The authors have called it a 'Geographic Differential Script File' (GDSF). A client creates a GDSF, which contains private information that is to be added onto the served data. The client keeps this file on a local disk. When the user employs the data, he applies the differential script sequence onto the downloaded data in order to retrieve the information. GDSF is a collection of graphic operation commands which insert and delete objects as well as modify operations. GDSF also contains modifications of the attribute information of geographic entities. This method can also be used to revise information that is published on ROM media, e. g. CD-ROM or DVD-ROM, as well as in a distributed environment. In this paper, the method and results of applying it are presented.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.