1-2hit |
Enze YANG Shuoyan LIU Yuxin LIU Kai FANG
Crowd flow prediction in high density urban scenes is involved in a wide range of intelligent transportation and smart city applications, and it has become a significant topic in urban computing. In this letter, a CNN-based framework called Pyramidal Spatio-Temporal Network (PSTNet) for crowd flow prediction is proposed. Spatial encoding is employed for spatial representation of external factors, while prior pyramid enhances feature dependence of spatial scale distances and temporal spans, after that, post pyramid is proposed to fuse the heterogeneous spatio-temporal features of multiple scales. Experimental results based on TaxiBJ and MobileBJ demonstrate that proposed PSTNet outperforms the state-of-the-art methods.
Shuoyan LIU Chao LI Yuxin LIU Yanqiu WANG
Escalators are an indispensable facility in public places. While they can provide convenience to people, abnormal accidents can lead to serious consequences. Yolo is a function that detects human behavior in real time. However, the model exhibits low accuracy and a high miss rate for small targets. To this end, this paper proposes the Small Target High Performance YOLO (SH-YOLO) model to detect abnormal behavior in escalators. The SH-YOLO model first enhances the backbone network through attention mechanisms. Subsequently, a small target detection layer is incorporated in order to enhance detection of key points for small objects. Finally, the conv and the SPPF are replaced with a Region Dynamic Perception Depth Separable Conv (DR-DP-Conv) and Atrous Spatial Pyramid Pooling (ASPP), respectively. The experimental results demonstrate that the proposed model is capable of accurately and robustly detecting anomalies in the real-world escalator scene.