Author Search Result

[Author] Zheng FANG(2hit)

1-2hit
  • Multi-Feature Fusion Network for Salient Region Detection

    Zheng FANG  Tieyong CAO  Jibin YANG  Meng SUN  

     
    PAPER-Image

      Vol:
    E102-A No:6
      Page(s):
    834-841

    Salient region detection is a fundamental problem in computer vision and image processing. Deep learning models perform better than traditional approaches but suffer from their huge parameters and slow speeds. To handle these problems, in this paper we propose the multi-feature fusion network (MFFN) - a efficient salient region detection architecture based on Convolution Neural Network (CNN). A novel feature extraction structure is designed to obtain feature maps from CNN. A fusion dense block is used to fuse all low-level and high-level feature maps to derive salient region results. MFFN is an end-to-end architecture which does not need any post-processing procedures. Experiments on the benchmark datasets demonstrate that MFFN achieves the state-of-the-art performance on salient region detection and requires much less parameters and computation time. Ablation experiments demonstrate the effectiveness of each module in MFFN.

  • Parallel Feature Network For Saliency Detection

    Zheng FANG  Tieyong CAO  Jibin YANG  Meng SUN  

     
    LETTER-Image

      Vol:
    E102-A No:2
      Page(s):
    480-485

    Saliency detection is widely used in many vision tasks like image retrieval, compression and person re-identification. The deep-learning methods have got great results but most of them focused more on the performance ignored the efficiency of models, which were hard to transplant into other applications. So how to design a efficient model has became the main problem. In this letter, we propose parallel feature network, a saliency model which is built on convolution neural network (CNN) by a parallel method. Parallel dilation blocks are first used to extract features from different layers of CNN, then a parallel upsampling structure is adopted to upsample feature maps. Finally saliency maps are obtained by fusing summations and concatenations of feature maps. Our final model built on VGG-16 is much smaller and faster than existing saliency models and also achieves state-of-the-art performance.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.