1-1hit |
Aiming at the complexity of posture recognition with Kinect, a method of posture recognition using distance characteristics is proposed. Firstly, depth image data was collected by Kinect, and three-dimensional coordinate information of 20 skeleton joints was obtained. Secondly, according to the contribution of joints to posture expression, 60 dimensional Kinect skeleton joint data was transformed into a vector of 24-dimensional distance characteristics which were normalized according to the human body structure. Thirdly, a static posture recognition method of the shortest distance and a dynamic posture recognition method of the minimum accumulative distance with dynamic time warping (DTW) were proposed. The experimental results showed that the recognition rates of static postures, non-cross-subject dynamic postures and cross-subject dynamic postures were 95.9%, 93.6% and 89.8% respectively. Finally, posture selection, Kinect placement, and comparisons with literatures were discussed, which provides a reference for Kinect based posture recognition technology and interaction design.