1-1hit |
Akihisa YAMADA Toshiki YAMAZAKI Nagisa ISHIURA Isao SHIRAKAWA Takashi KAMBE
A new approach is described for the datapath scheduling of behavioral descriptions containing nested conditional branches of arbitrary structures. This paper first investigates such a complex scheduling mechanism, and formulates an optimal scheduling problem as a 0-1 integer programming problem such that given a prescribed number of control steps, the total cost of functional units can be minimized. In this formulation, each constraint is expressed in the form of a Boolean function, which is set equal to 1 or 0 according as the constraint is satisfied or not, respectively, and a satisfiability problem is defined by the product of the Boolean functions. A procedure is then described, which intends to seek an optimal solution by means of a branch-and-bound method on a binary decision diagram representing the satisfiability problem. Experimental results are also shown, which demonstrate that our approach is of more practical use than the existing methods.