Keyword Search Result

[Keyword] ABCD matrix(2hit)

1-2hit
  • Crosstalk Analysis Method for Two Bent Lines on a PCB Using a Circuit Model

    Sang Wook PARK  Fengchao XIAO  Dong Chul PARK  Yoshio KAMI  

     
    PAPER-Printed Circuit Board

      Vol:
    E90-B No:6
      Page(s):
    1313-1321

    We propose a method of crosstalk analysis for two bent transmission lines with vias at both ends on a PCB using a circuit-concept approach in the quasi-static condition. In this condition, the electromagnetic fields can be approximately estimated by the quasi-static terms of the accurate Green's function in an inhomogeneous medium. Thus we obtain a circuit model in an ABCD matrix by taking account of the fields generated by a longitudinal line and a vertical via on a PCB. To verify the proposed approach, we conducted some experiments and compared our approach's results with measured results and a commercial electromagnetic solver's results.

  • Crosstalk Analysis for Two Bent Lines Using Circuit Model

    Sang Wook PARK  Fengchao XIAO  Dong Chul PARK  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:2
      Page(s):
    323-330

    The crosstalk phenomenon, wich occurs between transmission lines, is caused by electromagnetic fields of currents flowing through the lines. Crosstalk between two bent lines is studied by using a set of solutions of modified telegrapher's equations. By expressing electromagnetic fields in terms of voltages and currents in the line ends, the resultant network function in the form of an ABCD matrix is obtained. Electromagnetic fields caused by currents flowing in risers at transmission line ends are taken into account in addition to those fields in line sections. The validity of the proposed approach was confirmed by comparing experimental results with computed results and those simulated by a commercial electromagnetic solver for some bent-line models.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.