1-1hit |
Hyung-Hoon KIM Saehoon JU Seungwon CHOI Jong-Il PARK Hyeongdong KIM
To make the best use of the known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical results show that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest.