Keyword Search Result

[Keyword] DBN(3hit)

1-3hit
  • Robustness Evaluation of Restricted Boltzmann Machine against Memory and Logic Error

    Yasushi FUKUDA  Zule XU  Takayuki KAWAHARA  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E100-C No:12
      Page(s):
    1118-1121

    In an IoT system, neural networks have the potential to perform advanced information processing in various environments. To clarify this, the robustness of a restricted Boltzmann machine (RBM) used for deep neural networks, such as a deep belief network (DBN), was studied in this paper. Even if memory or logic errors occurred in the circuit operating in the RBM while pre-training the DBN, they did not affect the identification rate of the DBN, showing the robustness of the RBM. In addition, robustness against soft errors was evaluated. The soft errors had almost no influence on the RBM unless they were as large as 1012 times or more in the 50-nm CMOS process.

  • Speech/Music Classification Enhancement for 3GPP2 SMV Codec Based on Deep Belief Networks

    Ji-Hyun SONG  Hong-Sub AN  Sangmin LEE  

     
    LETTER-Speech and Hearing

      Vol:
    E97-A No:2
      Page(s):
    661-664

    In this paper, we propose a robust speech/music classification algorithm to improve the performance of speech/music classification in the selectable mode vocoder (SMV) of 3GPP2 using deep belief networks (DBNs), which is a powerful hierarchical generative model for feature extraction and can determine the underlying discriminative characteristic of the extracted features. The six feature vectors selected from the relevant parameters of the SMV are applied to the visible layer in the proposed DBN-based method. The performance of the proposed algorithm is evaluated using the detection accuracy and error probability of speech and music for various music genres. The proposed algorithm yields better results when compared with the original SMV method and support vector machine (SVM) based method.

  • Personal Event Management among Multiple Devices Based on User Intention Recognition Using Dynamic Bayesian Networks

    Hocheol JEON  Taehwan KIM  Joongmin CHOI  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:7
      Page(s):
    1440-1448

    This paper proposes a proactive management system for the events that occur across multiple personal user devices, including desktop PCs, laptops, and smart phones. We implemented the Personal Event Management Service using Dynamic Bayesian Networks (PEMS-DBN) system that proactively executes appropriate tasks across multiple devices without explicit user requests by recognizing the user's device reuse intention, based on the observed actions of the user for specific devices. The client module of PEMS-DBN installed on each device monitors the user actions and recognizes user intention by using dynamic Bayesian networks. The server provides data sharing and maintenance for the clients. A series of experiments were performed to evaluate user satisfaction and system accuracy, and also the amounts of resource consumption during intention recognition and proactive execution are measured to ensure the system efficiency. The experimental results showed that the PEMS-DBN system can proactively provide appropriate, personalized services with a high degree of satisfaction to the user in an effective and efficient manner.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.