1-8hit |
Yi CHENG Kexin LI Chunbo XIU Jiaxin LIU
In modern radar systems, the Generalized compound distribution model is more suitable for describing the amplitude distribution characteristics of radar sea clutter. Accurately and efficiently simulating sea clutter has important practical significance for radar signal processing and sea surface target detection. However, in traditional zero memory nonlinearity (ZMNL) method, the correlated Generalized compound distribution model cannot deal with non-integral or non-semi-integral parameter. In order to overcome this shortcoming, a new method of generating correlated Generalized compound distributed clutter is proposed, which changes the generation method of Generalized Gamma distributed random sequences in traditional Generalized compound distribution models. Firstly, by combining with the Gamma distribution and using the additivity of the Gamma distribution, the Probability Density Function (PDF) of Gamma function is transformed into a second-order nonlinear ordinary differential equation, and the Gamma distributed sequence under arbitrary parameter is solved. Then the Generalized Gamma distributed sequence with arbitrary parameter can be obtained through the nonlinear transformation relationship between the Generalized Gamma distribution and the Gamma distribution, so that the shape parameters of the Generalized compound distributed sea clutter are extended to general real numbers. Simulation results show that the proposed method is not only suitable for clutter simulation with non-integral or non-semi-integral shape parameter values, but also further improves the fitting degree.
Ning WANG Julian CHENG Chintha TELLAMBURA
To assess the performance of maximum-likelihood (ML) based Nakagami m parameter estimators, current methods rely on Monte Carlo simulation. In order to enable the analytical performance evaluation of ML-based m parameter estimators, we study the statistical properties of a parameter Δ, which is defined as the log-ratio of the arithmetic mean to the geometric mean for Nakagami-m fading power. Closed-form expressions are derived for the probability density function (PDF) of Δ. It is found that for large sample size, the PDF of Δ can be well approximated by a two-parameter Gamma PDF.
Yuye PANG Jun SUN Jia WANG Peng WANG
In this paper, the statistical characteristic of the Error Detection Delay (EDD) of Finite Precision Binary Arithmetic Codes (FPBAC) is discussed. It is observed that, apart from the probability of the Forbidden Symbol (FS) inserted into the list of the source symbols, the probability of the source sequence and the operation precision as well as the position of the FS in the coding interval can affect the statistical characteristic of the EDD. Experiments demonstrate that the actual distribution of the EDD of FPBAC is quite different from the geometric distribution of infinite precision arithmetic codes. This phenomenon is researched deeply, and a new statistical model (gamma distribution) of the actual distribution of the EDD is proposed, which can make a more precise prediction of the EDD. Finally, the relation expressions between the parameters of gamma distribution and the related factors affecting the distribution are given.
Tran HUY DAT Kazuya TAKEDA Fumitada ITAKURA
We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.
Yuichi OHSITA Shingo ATA Masayuki MURATA
Distributed denial-of-service attacks on public servers have recently become more serious. More are SYN Flood attacks, since the malicious attackers can easily exploit the TCP specification to generate traffic making public servers unavailable. To assure that network services will not be interrupted, we need faster and more accurate defense mechanisms against malicious traffic, especially SYN Floods. One of the problems in detecting SYN Flood traffic is that server nodes or firewalls cannot distinguish the SYN packets of normal TCP connections from those of SYN Flood attack. Moreover, since the rate of normal network traffic may vary, we cannot use an explicit threshold of SYN arrival rates to detect SYN Flood traffic. In this paper we introduce a mechanism for detecting SYN Flood traffic more accurately by taking into consideration the time variation of arrival traffic. We first investigate the statistics of the arrival rates of both normal TCP SYN packets and SYN Flood attack packets. We then describe our new detection mechanism based on the statistics of SYN arrival rates. Our analytical results show that the arrival rate of normal TCP SYN packets can be modeled by a normal distribution and that our proposed mechanism can detect SYN Flood traffic quickly and accurately regardless of time variance of the traffic.
Sung-Joon PARK Myoung-Wan KOO Chu-Shik JHON
This letter presents two methods of modeling phoneme durations. One is the context-independent phoneme duration modeling in which duration parameters are stored in each phoneme. The other is the context-dependent duration modeling in which duration parameters are stored in each state shared by context-dependent phonemes. The phoneme duration model is compared with a without-duration model and a state duration model. Experiments are performed on a database collected over the telephone network. Experimental results show that duration information rejects out-of-task (OOT) words well and that the context-dependent duration model yields the best performance among the tested models.
It is an important problem to estimate component reliabilities. For a series system due to cost and time constraints associated with failure analysis, all components cannot be investigated and the cause of failure is narrowed to a subset of components in some cases. When such a case occurs, we say that the cause of failure is masked. It is also necessary in some cases to take account of the influence of an environmental stress on all components. In this paper, we consider 2 and 3-component series systems when the component lifelengths are exponentially distributed and an environmental stress follows either a gamma or an inverse Gaussian distribution. We show that the lifelength of the system and the cause of failure are independent of each other. By comparison between the hazard functions in both models, we see that quite short and long lifelengths are more likely to occur in a gamma model than in an inverse Gaussian one. Assuming that the masking probabilities do not depend on which component actually fails, we show that the likelihood function can be factorized into three parts by a reparametrization. For some special cases, some estimators are given in closed-form. We use the computer failure data to see that our model is useful to analyze the real masked data. As compared with the Kaplan-Meier estimator, our models fit this computer data better than no environmental stress model. Further, we determine a suitable model using AIC. We see that the gamma model is fitted to the data better than the inverse Gaussian one. From a limited simulation study for a 3-component series system, we see that the relative errors of some estimators are inversely proportional to the square root of the expected number of systems whose cause of failure is identified.
John D. KANELLOPOULOS Spyros VENTOURAS
Multiple-site diversity systems are foreseen for earth to satellite paths operating at frequencies above 10GHz in localities with high rain-induced attenuation. In some severe cases double-site protection can be proved to be inadequate and consequently triple-site diversity becomes indispensable. In the present paper, an approach for the prediction of the triple-site diversity performance based on an appropriate three-dimensional gamma distribution is proposed. The model is oriented for application to earth-space paths located in Japan and other locations with similar climatic conditions. Numerical results are compared with the only available set of experimental data taken from some parts of the United States. Some useful conclusions are deduced.