Kenshiro SATO Dondee NAVARRO Shinya SEKIZAKI Yoshifumi ZOKA Naoto YORINO Hans Jürgen MATTAUSCH Mitiko MIURA-MATTAUSCH
The degradation of a SiC-MOSFET-based DC-AC converter-circuit efficiency due to aging of the electrically active devices is investigated. The newly developed compact aging model HiSIM_HSiC for high-voltage SiC-MOSFETs is used in the investigation. The model considers explicitly the carrier-trap-density increase in the solution of the Poisson equation. Measured converter characteristics during a 3-phase line-to-ground (3LG) fault is correctly reproduced by the model. It is verified that the MOSFETs experience additional stress due to the high biases occurring during the fault event, which translates to severe MOSFET aging. Simulation results predict a 0.5% reduction of converter efficiency due to a single 70ms-3LG, which is equivalent to a year of operation under normal conditions, where no additional stress is applied. With the developed compact model, prediction of the efficiency degradation of the converter circuit under prolonged stress, for which measurements are difficult to obtain and typically not available, is also feasible.
Yuki FUJIMURA Motoharu SONOGASHIRA Masaaki IIYAMA
Three-dimensional (3D) reconstruction and scene depth estimation from 2-dimensional (2D) images are major tasks in computer vision. However, using conventional 3D reconstruction techniques gets challenging in participating media such as murky water, fog, or smoke. We have developed a method that uses a continuous-wave time-of-flight (ToF) camera to estimate an object region and depth in participating media simultaneously. The scattered light observed by the camera is saturated, so it does not depend on the scene depth. In addition, received signals bouncing off distant points are negligible due to light attenuation, and thus the observation of such a point contains only a scattering component. These phenomena enable us to estimate the scattering component in an object region from a background that only contains the scattering component. The problem is formulated as robust estimation where the object region is regarded as outliers, and it enables the simultaneous estimation of an object region and depth on the basis of an iteratively reweighted least squares (IRLS) optimization scheme. We demonstrate the effectiveness of the proposed method using captured images from a ToF camera in real foggy scenes and evaluate the applicability with synthesized data.
Hiroki TAMARU Yuki SAITO Shinnosuke TAKAMICHI Tomoki KORIYAMA Hiroshi SARUWATARI
This paper proposes a generative moment matching network (GMMN)-based post-filtering method for providing inter-utterance pitch variation to singing voices and discusses its application to our developed mixing method called neural double-tracking (NDT). When a human singer sings and records the same song twice, there is a difference between the two recordings. The difference, which is called inter-utterance variation, enriches the performer's musical expression and the audience's experience. For example, it makes every concert special because it never recurs in exactly the same manner. Inter-utterance variation enables a mixing method called double-tracking (DT). With DT, the same phrase is recorded twice, then the two recordings are mixed to give richness to singing voices. However, in synthesized singing voices, which are commonly used to create music, there is no inter-utterance variation because the synthesis process is deterministic. There is also no inter-utterance variation when only one voice is recorded. Although there is a signal processing-based method called artificial DT (ADT) to layer singing voices, the signal processing results in unnatural sound artifacts. To solve these problems, we propose a post-filtering method for randomly modulating synthesized or natural singing voices as if the singer sang again. The post-filter built with our method models the inter-utterance pitch variation of human singing voices using a conditional GMMN. Evaluation results indicate that 1) the proposed method provides perceptible and natural inter-utterance variation to synthesized singing voices and that 2) our NDT exhibits higher double-trackedness than ADT when applied to both synthesized and natural singing voices.
Takashi NAKADA Hiroyuki YANAGIHASHI Kunimaro IMAI Hiroshi UEKI Takashi TSUCHIYA Masanori HAYASHIKOSHI Hiroshi NAKAMURA
Near real-time periodic tasks, which are popular in multimedia streaming applications, have deadline periods that are longer than the input intervals thanks to buffering. For such applications, the conventional frame-based schedulings cannot realize the optimal scheduling due to their shortsighted deadline assumptions. To realize globally energy-efficient executions of these applications, we propose a novel task scheduling algorithm, which takes advantage of the long deadline period. We confirm our approach can take advantage of the longer deadline period and reduce the average power consumption by up to 18%.
Satoshi MIZUTANI Xufeng ZHAO Toshio NAKAGAWA
When a unit repeats some works over again and undergoes minimal repairs at failures, it is more practical to replace it preventively at the end of working cycles or at its failure times. In this case, it would be an interesting problem to know which is better to replace the unit at a number of working cycles or at random failures from the point of cost. For this purpose, we give models of the expected cost rates for the following replacement policies: (1) The unit is replaced at a working cycle N and at a failure number K, respectively; (2) Replacement first and last policies with working cycle N and failure number K, respectively; (3) Replacement overtime policies with working cycle N and failure number K, respectively. Optimizations and comparisons of the policies for N and K are made analytically and numerically.
S-shaped nonlinearity is found in the electrical resistance-length relationship in an electroactive supercoiled polymer artificial muscle. The modulation of the electrical resistance is mainly caused by the change in the contact condition of coils in the artificial muscle upon deformation. A mathematical model based on logistic function fairly reproduces the experimental data of electrical resistance-length relationship.
Tung Thanh VU Duy Trong NGO Minh N. DAO Quang-Thang DUONG Minoru OKADA Hung NGUYEN-LE Richard H. MIDDLETON
This paper studies the joint optimization of precoding, transmit power and data rate allocation for energy-efficient full-duplex (FD) cloud radio access networks (C-RANs). A new nonconvex problem is formulated, where the ratio of total sum rate to total power consumption is maximized, subject to the maximum transmit powers of remote radio heads and uplink users. An iterative algorithm based on successive convex programming is proposed with guaranteed convergence to the Karush-Kuhn-Tucker solutions of the formulated problem. Numerical examples confirm the effectiveness of the proposed algorithm and show that the FD C-RANs can achieve a large gain over half-duplex C-RANs in terms of energy efficiency at low self-interference power levels.
Dawei YAN Cong LIU Peng YOU Shaowei YONG Dongfang GUAN Yu XING
In wireless networks, efficient topology improves the performance of network protocols. The previous research mainly focuses on how to construct a cost-efficient network structure from a static and connected topology. Due to lack of continuous connectivity in the underlying topology, most traditional topology control methods are not applicable to the delay or disruption tolerant networks (DTNs). In this paper, we consider the topology control problem in a predictable DTN where the dynamic topology is known a priori or can be predicted over time. First, this dynamic topology is modeled by a directed space-time graph that includes spatial and temporal information. Second, the topology control problem of the predictable DTN is formulated as building a sparse structure. For any pair devices, there is an efficient path connecting them to improve the efficiency of the generated structure. Then, a topology control strategy is proposed for this optimization problem by using a kth shortest paths algorithm. Finally, simulations are conducted on random networks and a real-world DTN tracing date. The results demonstrate that the proposed method can significantly improve the efficiency of the generated structure and reduce the total cost.
Kohei YOSHIGAMI Taishi HAYASHI Masateru TSUNODA Hidetake UWANO Shunichiro SASAKI Kenichi MATSUMOTO
Recently, many studies have applied gamification to software engineering education and software development to enhance work results. Gamification is defined as “the use of game design elements in non-game contexts.” When applying gamification, we make various game rules, such as a time limit. However, it is not clear whether the rule affects working time or not. For example, if we apply a time limit to impatient developers, the working time may become shorter, but the rule may negatively affect because of pressure for time. In this study, we analyze with subjective experiments whether the rules affects work results such as working time. Our experimental results suggest that for the coding tasks, working time was shortened when we applied a rule that made developers aware of working time by showing elapsed time.
Kyungdeuk KO Jaihyun PARK David K. HAN Hanseok KO
In-class species classification based on animal sounds is a highly challenging task even with the latest deep learning technique applied. The difficulty of distinguishing the species is further compounded when the number of species is large within the same class. This paper presents a novel approach for fine categorization of animal species based on their sounds by using pre-trained CNNs and a new self-attention module well-suited for acoustic signals The proposed method is shown effective as it achieves average species accuracy of 98.37% and the minimum species accuracy of 94.38%, the highest among the competing baselines, which include CNN's without self-attention and CNN's with CBAM, FAM, and CFAM but without pre-training.
Huangtao WU Wenjin HUANG Rui CHEN Yihua HUANG
To implement the parallel acceleration of convolution operation of Convolutional Neural Networks (CNNs) on field programmable gate array (FPGA), large quantities of the logic resources will be consumed, expecially DSP cores. Many previous researches fail to make a well balance between DSP and LUT6. For better resource efficiency, a typical convolution structure is implemented with LUT6s in this paper. Besides, a novel convolution structure is proposed to further reduce the LUT6 resource consumption by modifying the typical convolution structure. The equations to evaluate the LUT6 resource consumptions of both structures are presented and validated. The theoretical evaluation and experimental results show that the novel structure can save 3.5-8% of LUT6s compared with the typical structure.
Leilei HUANG Yibo FAN Chenhao GU Xiaoyang ZENG
High Efficiency Video Coding (HEVC) standard is now becoming one of the most widespread video coding standards in the world. As a successor of H.264 standard, it aims to provide a much superior encoding performance. To fulfill this goal, several new notations along with the corresponding computation processes are introduced by this standard. Among those computation processes, the integer motion estimation (IME) is one of bottlenecks due to the complex partitions of the inter prediction units (PU) and the large search window commonly adopted. Many algorithms have been proposed to address this issue and usually put emphasis on a large search window and great computation amount. However, the coding efforts should be related to the scenes. To be more specific, for relatively static videos, a small search window along with a simple search scheme should be adopted to reduce the time cost and power consumption. In view of this, a micro-code-based IME engine is proposed in this paper, which could be applied with search schemes of different complexity. To test the performance, three different search schemes based on this engine are designed and evaluated under HEVC test model (HM) 16.9, achieving a B-D rate increase of 0.55/-0.07/-0.14%. Compared with our previous work, the hardware implementation is optimized to reduce 64.2% of the SRAMs bits and 32.8% of the logic gate count. The final design could support 4K×2K @139/85/37fps videos @500MHz.
Lianpeng LI Jian DONG Decheng ZUO Yao ZHAO Tianyang LI
For cloud data center, Virtual Machine (VM) consolidation is an effective way to save energy and improve efficiency. However, inappropriate consolidation of VMs, especially aggressive consolidation, can lead to performance problems, and even more serious Service Level Agreement (SLA) violations. Therefore, it is very important to solve the tradeoff between reduction in energy use and reduction of SLA violation level. In this paper, we propose two Host State Detection algorithms and an improved VM placement algorithm based on our proposed Host State Binary Decision Tree Prediction model for SLA-aware and energy-efficient consolidation of VMs in cloud data centers. We propose two formulas of conditions for host state estimate, and our model uses them to build a Binary Decision Tree manually for host state detection. We extend Cloudsim simulator to evaluate our algorithms by using PlanetLab workload and random workload. The experimental results show that our proposed model can significantly reduce SLA violation rates while keeping energy cost efficient, it can reduce the metric of SLAV by at most 98.12% and the metric of Energy by at most 33.96% for real world workload.
Guoqiang CHENG Qingquan HUANG Zhi LIN Xiangshuai TAO Jian OUYANG Guodong WU
In this paper, we consider a hybrid satellite terrestrial cooperative network with a multi-antenna relay where the satellite links follows the shadowed-Rician fading and the terrestrial link undergoes the correlated Rayleigh fading. Specifically, two different channel state information (CSI) assumptions are considered: 1) full CSI at the relay; 2) full CSI of satellite-relay link and statistical CSI of relay-destination link at the relay. In addition, selection combining (SC) or maximal ratio combining (MRC) are used at the destination to combine the signals from direct link and relay link. By considering the above four cases, we derived the closed-form expressions for the outage probability (OP) respectively. Furthermore, the asymptotic OP expressions at high signal-to-noise (SNR) are developed to reveal the diversity orders and the array gains of the considered network. Finally, numerical results are provided to validate our analytical expressions as well as the system performance for different cases.
Zhisheng HUO Limin XIAO Zhenxue HE Xiaoling RONG Bing WEI
Previous works have studied the throughput allocation of the heterogeneous storage system consisting of SSD and HDD in the dynamic setting where users are not all present in the system simultaneously, but those researches make multiple servers as one large resource pool, and cannot cope with the multi-server environment. We design a dynamic throughput allocation mechanism named DAM, which can handle the throughput allocation of multiple heterogeneous servers in the dynamic setting, and can provide a number of desirable properties. The experimental results show that DAM can make one dynamic throughput allocation of multiple servers for making sure users' local allocations in each server, and can provide one efficient and fair throughput allocation in the whole system.
Tatsuya NAGAI Masaki KAMIZONO Yoshiaki SHIRAISHI Kelin XIA Masami MOHRI Yasuhiro TAKANO Masakatu MORII
Epidemic cyber incidents are caused by malicious websites using exploit kits. The exploit kit facilitate attackers to perform the drive-by download (DBD) attack. However, it is reported that malicious websites using an exploit kit have similarity in their website structure (WS)-trees. Hence, malicious website identification techniques leveraging WS-trees have been studied, where the WS-trees can be estimated from HTTP traffic data. Nevertheless, the defensive component of the exploit kit prevents us from capturing the WS-tree perfectly. This paper shows, hence, a new WS-tree construction procedure by using the fact that a DBD attack happens in a certain duration. This paper proposes, moreover, a new malicious website identification technique by clustering the WS-tree of the exploit kits. Experiment results assuming the D3M dataset verify that the proposed technique identifies exploit kits with a reasonable accuracy even when HTTP traffic from the malicious sites are partially lost.
Xiangbin YU Xi WANG Tao TENG Qiyishu LI Fei WANG
In this paper, we study the power allocation (PA) scheme design for energy efficiency (EE) maximization with discrete-rate adaptive modulation (AM) in the downlink distributed antenna system (DAS). By means of the Karush-Kuhn-Tucker (KKT) conditions, an optimal PA scheme with closed-form expression is derived for maximizing the EE subject to maximum transmit power and target bit error rate (BER) constraints, where the number of active transmit antennas is also derived for attaining PA coefficients. Considering that the optimal scheme needs to calculate the PA of all transmit antennas for each modulation mode, its complexity is extremely high. For this reason, a low-complexity suboptimal PA is also presented based on the antenna selection method. By choosing one or two remote antennas, the suboptimal scheme offers lower complexity than the optimal one, and has almost the same EE performance as the latter. Besides, the outage probability is derived in a performance evaluation. Computer simulation shows that the developed optimal scheme can achieve the same EE as the exhaustive search based approach, which has much higher complexity, and the suboptimal scheme almost matches the EE of the optimal one as well. The suboptimal scheme with two-antenna selection is particularly effective in terms of balancing performance and complexity. Moreover, the derived outage probability is in good agreement with the corresponding simulation.
Tao WANG Mingfang WANG Yating WU Yanzan SUN
This paper proposes an energy efficiency (EE) maximized resource allocation (RA) algorithm in orthogonal frequency division multiple access (OFDMA) downlink networks with multiple relays, where a novel opportunistic subcarrier pair based decode-and-forward (DF) protocol with beamforming is used. Specifically, every data transmission is carried out in two consecutive time slots. During every transmission, multiple parallel paths, including relayed paths and direct paths, are established by the proposed RA algorithm. As for the protocol, each subcarrier in the 1st slot can be paired with any subcarrier in 2nd slot to best utilize subcarrier resources. Furthermore, for each relayed path, multiple (not just single or all) relays can be chosen to apply beamforming at the subcarrier in the 2nd slot. Each direct path is constructed by an unpaired subcarrier in either the 1st or 2nd slot. In order to guarantee an acceptable spectrum efficiency, we also introduce a minimum rate constraint. The EE-maximized problem is a highly nonlinear optimization problem, which contains both continuous, discrete variables and has a fractional structure. To solve the problem, the best relay set and resource allocation for a relayed path are derived first, then we design an iterative algorithm to find the optimal RA for the network. Finally, numerical experiments are taken to demonstrate the effectiveness of the proposed algorithm, and show the impact of minimum rate requirement, user number and circuit power on the network EE.
Xinyu DA Lei NI Hehao NIU Hang HU Shaohua YUE Miao ZHANG
In this work, we investigate a joint transmit beamforming and artificial noise (AN) covariance matrix design in a multiple-input multiple-output (MIMO) cognitive radio (CR) downlink network with simultaneous wireless information and power transfer (SWIPT), where the malicious energy receivers (ERs) may decode the desired information and hence can be treated as potential eavesdroppers (Eves). In order to improve the secure performance of the transmission, AN is embedded to the information-bearing signal, which acts as interference to the Eves and provides energy to all receivers. Specifically, this joint design is studied under a practical non-linear energy harvesting (EH) model, our aim is to maximize the secrecy rate at the SR subject to the transmit power budget, EH constraints and quality of service (QoS) requirement. The original problem is not convex and challenging to be solved. To circumvent its intractability, an equivalent reformulation of this secrecy rate maximization (SRM) problem is introduced, wherein the resulting problem is primal decomposable and thus can be handled by alternately solving two convex subproblems. Finally, numerical results are presented to verify the effectiveness of our proposed scheme.
Lei NI Xinyu DA Hang HU Miao ZHANG Hehao NIU
This paper introduces an energy-efficient transmit design for multiple-input single-output (MISO) energy-harvesting cognitive radio (CR) networks in the presence of external eavesdroppers (Eves). Due to the inherent characteristics of CR network with simultaneous wireless information and power transfer (SWIPT), Eves may illegitimately access the primary user (PU) bands, and the confidential message is prone to be intercepted in wireless communications. Assuming the channel state information (CSI) of the Eves is not perfectly known at the transmitter, our approach to guaranteeing secrecy is to maximize the secrecy energy efficiency (SEE) by jointly designing the robust beamforming and the power splitting (PS) ratio, under the constraints of total transmit power, harvested energy at secondary receiver (SR) and quality of service (QoS) requirement. Specifically, a non-linear energy harvesting (EH) model is adopted for the SR, which can accurately characterize the property of practical RF-EH circuits. To solve the formulated non-convex problem, we first employ fractional programming theory and penalty function to recast it as an easy-to-handle parametric problem, and then deal with the non-convexity by applying S-Procedure and constrained concave convex procedure (CCCP), which enables us to exploit the difference of concave functions (DC) programming to seek the maximum worst-case SEE. Finally, numerical results are presented to verify the performance of the proposed scheme.