Parin SORNLERTLAMVANICH Sinchai KAMOLPHIWONG
The Mobile IPv6 protocol (MIPv6) allows a single Mobile Node (MN) to keep the same IPv6 address independently of its network of attachment. Network Mobility protocol (NEMO) is an extension of MIPv6. NEMO is concerned with managing the mobility of an entire network, so it's used for devices or vehicles which move to another point of attachment to the Internet. Proxy Mobile IPv6 (PMIPv6) has been developed for local mobility management whereas MIPv6 and NEMO address global mobility for both hosts and routers. This paper proposes a distributed mobility solution based on NEMO for heterogeneous mobile IP networks, so called Host-based and Network-based Distributed Mobility Management for NEMO (HND-NEMO), where different types of IP mobility management are operating. Our solution utilizes both network-based and host-based mechanisms. Multiple Home Agents (HAs) are deployed, and the mobility anchors are closer to the edge of the network in order to provide optimal routing and lower delays. We show that our solution provides smooth mobility in global domains, local domains, and no mobility service domains, in terms of handover latency, signaling and packet delivery costs, and end to end delay.
Seong-Mun KIM Hyon-Young CHOI Youn-Hee HAN Sung-Gi MIN
In this paper, Proxy Mobile IPv6 (PMIPv6), which is a network-based mobility management protocol, is adapted to the OpenFlow architecture. Mobility-related signaling is generally performed by network entities on behalf of a mobile node, but in standard PMIPv6, the control and data packets are delivered and processed over the same network entities, which prevents the separation of the control and the data planes. In addition, IP tunneling inherent to PMIPv6 imposes excessive overhead for the network entities. In order to adapt PMIPv6 to the OpenFlow architecture, the mobility management function is separated from the PMIPv6 components, and components are reconstructed to take advantage of the offerings of the OpenFlow architecture. The components configure the flow table of the switches located in a path, which comprise the OpenFlow controller. Mobility-related signaling can then be performed at the dedicated secure channel, and all of the data packets can be sent normally in accordance with the flow table of the OpenFlow switches. Consequently, the proposed scheme eliminates IP tunneling when user traffic is forwarded and separates the data and the control planes. The performance analysis revealed that the proposed scheme can outperform PMIPv6 in terms of the signaling cost, packet delivery cost, and handover latency.
Won-Kyeong SEO Jae-In CHOI You-Ze CHO
The Internet Engineering Task Force (IETF) has been actively standardizing distributed mobility management (DMM) schemes with multiple Mobility Anchors (MAs). Yet, all existing schemes have limitations that preclude the efficient distribution of mobile data traffic, including single point failure problems, heavy tunneling overheads between MAs, and a restrictive traffic distribution for external nodes in a mobility domain. Therefore, this paper proposes an efficient mobility management scheme with a virtual Local Mobility Anchor (vLMA). While the vLMA is designed assuming multiple replicated LMAs for a PMIPv6 domain, it acts virtually as a single LMA for the internal and external nodes in the PMIPv6 domain. Furthermore, the vLMA distributes mobile data traffic using replicated LMAs, and routes packets via a replicated LMA on the optimal routing path. Performance evaluations confirm that the proposed scheme can distribute mobile data traffic more efficiently and reduce the end-to-end packet delay than the Distributed Local Mobility Anchor (DLMA) and the Proxy Mobile IPv6 (PMIPv6).
Oshani ERUNIKA Kunitake KANEKO Fumio TERAOKA
Mobile IPv6 is an IETF (Internet Engineering Task Force) standard which permits node mobility in IPv6. To manage mobility, it establishes a centralized mediator, Home Agent (HA), which inevitably introduces several penalties like triangular routing, single point of failure and limited scalability. Some later extensions such as Global HAHA, which employed multiple HAs, made to alleviate above shortcomings by introducing Distributed Mobility Management (DMM) approach. However, Multiple HA model will not be beneficial, unless the HAs are located finely. But, no major research paper has focused on locating HAs. This paper examines impact of single and multiple HA placements in data plane, by using an Autonomous System (AS) level topology consisting of 30,000 nodes with several evaluation criteria. All possible placements of HA(s) are analysed on a fair, random set of 30,000 node pairs of Mobile Nodes (MN) and Correspondent Nodes (CN). Ultimate result provides a concise account of different HA placements: i.e. cost centrality interprets performance variation better than degree centrality or betweenness. 30,000 ASs are classified into three groups in terms of Freeman's closeness index and betweenness centrality: 1) high range group, 2) mid range group, and 3) low range group. Considering dual HA placement, if one HA is placed in an AS in the high range group, then any subsequent HA placement gives worse results, thus single HA placement is adequate. With the mid range group, similar results are demonstrated by the upper portion of the group, but the rest yields better results when combined with another HA. Finally, from the perspective of low range group, if the subsequent HA is placed in the high range group, it gives better result. On the other hand, betweenness based grouping yields varying results. Consequently, this study reveals that the Freeman's closeness index is most appropriate in determining impacts of HA placements among considered indices.
Taekook KIM Chunying LI Taihyong YIM Youngjun KIM Myeongyu KIM Jinwoo PARK
This study proposes an integrated technology based on Proxy Mobile IPv6, which is a network-based protocol with mobility support, and a mobile content delivery network (CDN) that provides efficient content delivery management. The proposed architecture offers several benefits, such as the conservation of network resources because of reduced total traffic between hops and a reduced hop count.
Proxy Mobile IPv6 (PMIPv6) is a network-based localized mobility management protocol that is independent of global mobility management protocols. In a single local mobility domain, the mobile node (MN) is not involved in any IP mobility-related signaling, but when the MN moves into another local mobility domain, the MN must change its PMIPv6 home address. In this case, host-based mobility signaling is activated, and PMIPv6's network-based mobility cannot be retained. Additionally, if the MN does not support global mobility, it cannot maintain its communication sessions with its correspondent node. In this paper, we propose a solution for network-based global mobility support in PMIPv6 networks, which allows the MN to maintain active communication sessions without mobility protocol stacks when the MN moves into another local mobility domain. In the proposed mechanism, the MN remains unaware of its movement when it moves to another local mobility domain, and it is forced to use only its MIPv6 home address for all its communication. Thus, the MN is not involved in any IP mobility-related signaling, despite its movement. The proposed protocol provides for global mobility while retaining the advantages of the network-based localized mobility in the Proxy Mobile IPv6 protocol. In this paper, we propose a solution for global mobility support in PMIPv6 networks by which the MAG (Mobile Access Gateway) can maintain the MN's communication sessions during inter-domain handover. In the proposed mechanism, the MN remains unaware of its movement when it moves to another local mobility domain, and it is forced to use only its MIPv6 home address for all its communication. Thus, the MN is not involved in any IP mobility-related signaling, despite its movement. We evaluate and compare network performance between our proposed solution and PMIPv6 and the main host-based mobility protocol. We evaluate and compare handover delays, and packet loss cost of the two protocols.
This letter proposes a new mechanism that supports adaptive sending control using Real-Time Streaming Protocol (RTSP) and Transmission Control Protocol (TCP) for IPTV service over heterogeneous networks. The proposed mechanism is implemented on a mobile IPTV device and its performance is verified for providing seamless television watching in heterogeneous networks, even when in motion.
Soohong PARK Jun LEE Choong Seon HONG
This letter proposes a new mechanism for network configuration on a mobile device that provides Point of Attachment (PoA) specific information using IEEE 802.21 and DHCP before moving to a new PoA. This allows the mobile device to prepare for intelligent handover decision either stateless address configuration or stateful address configuration when entering an IPv6 network. It allows the mobile device to reduce time delay for IP address configuration in the new PoA. Implementation and evaluation results show that the proposed mechanism can be an acceptable network configuration mechanism for providing seamless television watching in IPv6 mobile networks, even when in motion.
Won-Kyeong SEO Kang-Won LEE Jae-In CHOI You-Ze CHO
PMIPv6 is the IETF standard for a network-based localized mobility management protocol. In PMIPv6, MNs are topologically anchored at an LMA, which forwards all data for registered MNs. However, since all data packets destined for MNs always traverse the MNs' LMA, the end-to-end packet delay is increased. Therefore, this paper proposes an RO scheme in single and multiple LMA environments. For efficient RO possibility detection, an IPv6 RO extension header and initial RO procedure are proposed. Plus, an effective post-handover RO procedure is presented, along with a packet forwarding scheme to avoid the race condition problem during an RO operation. A Performance evaluation confirms that the proposed scheme can significantly reduce the end-to-end delay, signaling overhead, and RO latency when compared with existing RO schemes.
Chen-Hua SHIH Jun-Li KUO Cheng-Yuan HO Yaw-Chung CHEN
As we are moving toward next generation wireless networks, we are facing the integration of heterogeneous access networks. The main challenge is to provide mobile users moving freely across different radio access technologies with satisfactory quality of services for a variety of applications. Consequently, the seamless roaming over heterogeneous networks is an important concern. To minimize the disruption to the ongoing session when a mobile user is moving from one access network to another, we propose a framework that integrates IEEE 802.11 WLANs and IEEE 802.16 WMANs based on the IEEE 802.21, so-called Media Independent Handover (MIH), to facilitate both homogeneous and heterogeneous handovers. Both numerical analysis and simulation results show that seamless roaming between WLAN and WMAN can be achieved and much better performance can be obtained compared with the IEEE 802.21 standard approach.
Kwang-Ryoul KIM Hyo-Beom LEE Hyon-Young CHOI Sung-Gi MIN Youn-Hee HAN
Proxy Mobile IPv6 (PMIPv6) is proposed as a new network-based local mobility protocol which does not involve the Mobile Node (MN) in mobility management. PMIPv6, which uses link-layer attachment information, reduces the movement detection time and eliminates duplicate address detection procedures in order to provide faster handover than Mobile IPv6 (MIPv6). To eliminate packet loss during the handover period, the Local Mobility Anchor (LMA) buffering scheme is proposed. In this scheme, the LMA buffers lost packets of the Mobile Access Gateway (MAG) and the MN during the handover and recovers them after handover. A new Automatic Repeat reQuest (ARQ) handler is defined which efficiently manages the LMA buffer. The ARQ handler relays ARQ result between the MAG and the MN to the LMA. The LMA removes any buffered packets which have been successfully delivered to the MN. The ARQ handler recovers the packet loss during the handover using buffered packets in the LMA. The ARQ information, between the MAG and LMA, is inserted in the outer header of IP-in-IP encapsulated packets of a standard PMIPv6 tunnel. Since the proposed scheme simply adds information to the standard operation of an IP-in-IP tunnel between the LMA and the MAG, it can be implemented seamlessly without modification to the original PMIPv6 messages and signaling sequence. Unlike other Fast Handovers for Mobile IPv6 (FMIPv6) based enhancement for PMIPv6, the proposed scheme does not require any handover related information before the actual handover.
Tomotaka WADA Hiroyuki TAKAHASHI Kouichi MUTSUURA Hiromi OKADA
Many researchers have recently studied various applications such as Inter-Vehicle Communications (IVC) and Road-to-Vehicle Communications (RVC) for Intelligent Transport Systems (ITS). RVC is a key technology that can connect vehicles with the internet through Road Side Units (RSUs). Relative positions between vehicles vary within short periods of time. Neighboring vehicles and barriers cause shadowing that blocks communication for extended periods of time between RSUs and vehicles. We propose a fast scheme of Mobile IPv6 handover using dual-band communications in RVC. This scheme uses ISM and UHF dual bands. It switches to the UHF band during handover or in the shadowing period. We demonstrate that the proposed scheme can establish continuous communications through computer simulations.
Soohong PARK Jun LEE Choong Seon HONG
This letter proposes a new fast network configuration scheme that realizes an IP interface that allows users to view Internet Protocol TV (IPTV) in IPv6 networks more quickly than is possible with the current configuration procedure. The new scheme, a hybrid combination of IPv6, address information, and non-IP information, especially the Domain Name Service, is newly designed based on a technical analysis. The evaluation results show that the proposed scheme is acceptable for real-time television watching in IPv6 networks, even when in motion.
Jirawat THAENTHONG Steven GORDON
A MANEMO node is an IP-based mobile node that has interface attachments to both a mobile network, using Network Mobility (NEMO), and a Mobile Ad Hoc Network (MANET). While communicating with a correspondent node in the Internet, the MANEMO node should use the best possible path. Therefore, as conditions change, a handover between NEMO and MANET is desirable. This paper describes the operation of a MANEMO handover when IEEE 802.11 is used. An analytical model illustrates that packet loss during a MANEMO handover may severely affect data and real-time applications. We therefore propose using buffering during the handover, by making use of the Power Save Mode in IEEE 802.11. In the proposed algorithm, a MANEMO node may rapidly switch between the two interfaces, eventually receiving packets delivered via the old network interface while initiating the Mobile IP/NEMO handover on the new interface. Performance results show that packet loss can be significantly reduced, with small and acceptable increases in signalling overhead and end-to-end delay.
Heeyoung JUNG Moneeb GOHAR Ji-In KIM Seok-Joo KOH
In future mobile networks, the ever-increasing loads imposed by mobile Internet traffic will force the network architecture to be changed from hierarchical to flat structure. Most of the existing mobility protocols are based on a centralized mobility anchor, which will process all control and data traffic. In the flat network architecture, however, the centralized mobility scheme has some limitations, such as unwanted traffic flowing into the core network, service degradation by a single point of failure, and increased operational costs, etc. This paper proposes mobility schemes for distributed mobility control in the flat network architecture. Based on the Proxy Mobile IPv6 (PMIP), which is a well-known mobility protocol, we propose the three mobility schemes: Signal-driven PMIP (S-PMIP), Data-driven Distributed PMIP (DD-PMIP), and Signal-driven Distributed PMIP (SD-PMIP). By numerical analysis, we show that the proposed distributed mobility schemes can give better performance than the existing centralized scheme in terms of the binding update and packet delivery costs, and that SD-PMIP provides the best performance among the proposed distributed schemes.
Jegyun NA Seonggeun RYU Kyunghye LEE Youngsong MUN
In PMIPv6, all packets sent by mobile nodes or correspondent nodes are transferred through the local mobility anchor. This unnecessary detour results in high delivery latency and significant processing cost. Several PMIPv6 route optimization schemes have been proposed to solve this issue. However, they also suffer from the high signaling costs when determining the optimized path. The proposed scheme which adopts the prediction algorithm in PFMIPv6 can reduce the signaling costs of the previous schemes. Analytical performance evaluation is performed to show the effectiveness of the proposed scheme.
Ronny Yongho KIM Inuk JUNG Young Yong KIM
IEEE 802.16m is an advanced air interface standard which is under development for IMT-Advanced systems, known as 4G systems. IEEE 802.16m is designed to provide a high data rate and a Quality of Service (QoS) level in order to meet user service requirements, and is especially suitable for mobilized environments. There are several factors that have great impact on such requirements. As one of the major factors, we mainly focus on latency issues. In IEEE 802.16m, an enhanced layer 2 handover scheme, described as Entry Before Break (EBB) was proposed and adopted to reduce handover latency. EBB provides significant handover interruption time reduction with respect to the legacy IEEE 802.16 handover scheme. Fast handovers for mobile IPv6 (FMIPv6) was standardized by Internet Engineering Task Force (IETF) in order to provide reduced handover interruption time from IP layer perspective. Since FMIPv6 utilizes link layer triggers to reduce handover latency, it is very critical to jointly design FMIPv6 with its underlying link layer protocol. However, FMIPv6 based on new handover scheme, EBB has not been proposed. In this paper, we propose an improved cross-layering design for FMIPv6 based on the IEEE 802.16m EBB handover. In comparison with the conventional FMIPv6 based on the legacy IEEE 802.16 network, the overall handover interruption time can be significantly reduced by employing the proposed design. Benefits of this improvement on latency reduction for mobile user applications are thoroughly investigated with both numerical analysis and simulation on various IP applications.
Yong LI Depeng JIN Li SU Lieguang ZENG
To deal with the increasing number of mobile devices accessing the Internet and the increasing demands of mobility management, IETF has proposed Mobile IPv6 and its fast handover protocol FMIPv6. In FMIPv6, the possibility of Care-of Address (CoA) collision and the time for Return Routability (RR) procedure result in long handover delay, which makes it unsuitable for real-time applications. In this paper, we propose an improved handover scheme for FMIPv6, which reduces the handover delay by using proactive CoA acquisition, configuration and test method. In our proposal, collision-free CoA is proactively prepared, and the time for RR procedure does not contribute to the handover delay. Furthermore, we analyze our proposal's benefits and overhead tradeoff. The numerical results demonstrate that it outperforms the current schemes, such as FMIPv6 and enhanced FMIPv6, on the aspect of handover delay and packet transmission delay.
Soochang PARK Euisin LEE Min-Sook JIN Sang-Ha KIM
In Proxy Mobile IPv6 (PMIPv6), when a Mobile Node (MN) enters a PMIPv6 domain and attaches to an access link, the router on the access link detects attachment of the MN by the link-layer access. All elements of PMIPv6 including the router then provide network-based mobility management service for the MN. If the MN moves to another router in this PMIPv6 domain, the new router emulates attachment to the previous router by providing same network prefix to the MN. In other words, PMIPv6 provides rapid mobility management based on layer-2 attachment and transparent mobility support to the MN by emulating layer-3 attachment with respect to intra-domain roaming. However, when the MN moves to other PMIPv6 domains, although the domains also provide the network-based mobility management service, the MN should exploit the host-based mobility management protocol, i.e. Mobile IPv6 (MIPv6), for the inter-domain roaming. Hence, this letter proposes the rapid and transparent inter-domain roaming mechanism controlled by the networks adopting PMIPv6.
This paper considers a new reactive fast handover MIPv6 (FMIPv6) mechanism to minimize packet loss of the existing mechanism. The primary idea of the proposed reactive FMIPv6 mechanism is that the serving access router buffers packets toward the mobile node (MN) as soon as the link layer between MN and serving base station is disconnected. To implement the proposed mechanism, the router discovery message exchanged between MN and serving access router is extended. In addition, the IEEE 802.21 Media Independent Handover Function event service message is defined newly. Through analytic performance evaluation and experiments, the proposed reactive FMIPv6 mechanism can be shown to minimize packet loss much than the existing mechanism.