1-5hit |
Emilia WEYULU Masaki HANADA Hidehiro KANEMITSU Eun-Chan PARK Moo Wan KIM
Interference in ad hoc WLANs is a common occurrence as there is no centralized access point controlling device access to the wireless channel. IEEE 802.11 WLANs use carrier sense multiple access with collision avoidance (CSMA/CA) which initiates the Request to Send/Clear to Send (RTS/CTS) handshaking mechanism to solve the hidden node problem. While it solves the hidden node problem, RTS/CTS triggers the exposed node problem. In this paper, we present an evaluation of a method for reducing exposed nodes in 802.11 ad hoc WLANs. Using asymmetric transmission ranges for RTS and CTS frames, a cross-layer design is implemented between Layer 2 and 3 of the OSI model. Information obtained by the AODV routing protocol is utilized in adjusting the RTS transmission range at the MAC Layer. The proposed method is evaluated with the NS-2 simulator and we observe significant throughput improvement, and confirm the effectiveness of the proposed method. Especially when the mobile nodes are randomly distributed, the throughput gain of the Asymmetric RTS/CTS method is up to 30% over the Standard RTS/CTS method.
Regarding IEEE 802.11 wireless local area networks (WLANs), many researchers are focusing on signal-to-noise ratio (SNR)-based rate adaptation schemes, because these schemes have the advantage of accurately selecting transmission rates that suit the channel. However, even SNR-based rate adaptation schemes work poorly in a rapidly varying channel environment. If a transmitter cannot receive accurate rate information due to fast channel fading, it encounters continuous channel errors, because the cycle of rate adaptation and rate information feedback breaks. A well-designed request-to-send/clear-to-send (RTS/CTS) frame exchange policy that accurately reflects the network situation is an indispensable element for enhancing the performance of SNR-based rate adaptation schemes. In this paper, a novel rate adaptation scheme called adaptive RTS/CTS-exchange and rate prediction (ARRP) is proposed, which adapts the transmission rate efficiently for variable network situations, including rapidly varying channels. ARRP selects a transmission rate by predicting the SNR of the data frame to transmit when the channel condition becomes worse. Accordingly, ARRP prevents continuous channel errors through a pre-emptive transmission rate adjustment. Moreover, ARRP utilizes an efficient RTS/CTS frame exchange algorithm that considers the number of contending stations and the current transmission rate of data frames, which drastically reduces both frame collisions and RTS/CTS-exchange overhead simultaneously. Simulation results show that ARRP achieves better performance than other rate adaptation schemes.
Kohei OMORI Yosuke TANIGAWA Hideki TODE
This paper addresses power saving for STAs (Wireless Stations) in WLANs (Wireless LANs). Mobile devices are increasingly used in situations in which they access WLANs. However, mobile devices consume large amounts of power when they communicate through a WLAN, and this shortens their battery lifetime. IEEE 802.11 specifies PSM (Power-Saving Mode) as the power-saving method for standard WLANs. However, the sleep conditions specified by PSM for STAs are not optimal in terms of power saving, except when the number of STAs is small, and this increases packet transfer delay. In this paper, we propose a power-saving method in which STAs reduce power consumption by sleeping for a period specified by the NAV (Network Allocation Vector) duration, which is set by an RTS/CTS handshake, and the duration of the NAV is extended by bidirectional burst transmission. To suppress the transfer delay caused by the bidirectional burst transmission, an AP (Access Point) manages the transmission deadline of each downlink packet on the basis of its acceptable value of delay and adapts the number of packets transferred in the bidirectional burst transmission. Although another existing method also uses the NAV duration to manage STA sleeping, the bidirectional burst transmission can only be initiated by the STAs themselves and the NAV is of an extremely limited duration. On the other hand, the proposed method specifies generalized bidirectional burst transmission without the limitations of the transmission initiator and the burst length within acceptable packet transfer delay. Moreover, we investigate the combination of the proposed method with PSM in order to improve the performance in situations in which the number of STAs is small by taking advantage of the combined properties of PSM and the proposed method. The evaluation results demonstrate that these proposed methods can reduce the power consumption of wireless stations and suppress packet transfer delay.
Yonghun LEE Kyujin LEE Kyesan LEE Doug Young SUH
We propose a distributed node selection (DNS) scheme that guarantees quality of service (QoS) of the scalable video broadcasting system over wireless channels. The proposed DNS scheme chooses the destination node based on the SVC layer information, and it selects the best relay from a set of competing candidate nodes by considering two factors: 1) wireless channel conditions between destination and relay candidates and 2) scalable video's layer information. In simulations, the performance of the proposed scheme in terms of quality gains, complexity (overhead) and applicability was examined.
In IEEE 802.11 Wireless Local Area Networks (WLANs), the hidden station problem can increase the collision probability and thus degrade the network throughput significantly. The Request-to-Send/Clear-to-Send (RTS/CTS) exchange may mitigate excessive collision due to hidden stations by reserving the channel before transmitting a data frame. However, it incurs significant bandwidth overhead if there is no hidden station. Although there has been a notable attempt to detect hidden stations so that the RTS/CTS exchange is activated only when hidden stations exist, the previous scheme fails to detect hidden stations if the stations have heterogeneous carrier sense ranges as in the real world. In this paper, we propose a new hidden station detection mechanism, which operates within the framework of our collision detection scheme. Therefore, stations can detect a hidden station without any extra cost while collision detection is being performed. In addition, we propose to transmit the RTS frames at a stronger power level than the nominal transmission power to improve the fairness of hidden stations further. We also propose a dynamic transmit power control strategy during the RTS transmission to mitigate the exposed station problem. Comprehensive simulations show that the adaptive RTS/CTS exchange based on the proposed scheme improves the system throughput as well as fairness in various environments including heterogeneous carrier sense ranges.