Keyword Search Result

[Keyword] SOA(24hit)

1-20hit(24hit)

  • Reach Extension of 10G-EPON Upstream Transmission Using Distributed Raman Amplification and SOA

    Ryo IGARASHI  Masamichi FUJIWARA  Takuya KANAI  Hiro SUZUKI  Jun-ichi KANI  Jun TERADA  

     
    PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1257-1264

    Effective user accommodation will be more and more important in passive optical networks (PONs) in the next decade since the number of subscribers has been leveling off as well and it is becoming more difficult for network operators to keep sufficient numbers of maintenance workers. Drastically reducing the number of small-scale communication buildings while keeping the number of accommodated users is one of the most attractive solutions to meet this situation. To achieve this, we propose two types of long-reach repeater-free upstream transmission configurations for PON systems; (i) one utilizes a semiconductor optical amplifier (SOA) as a pre-amplifier and (ii) the other utilizes distributed Raman amplification (DRA) in addition to the SOA. Our simulations assuming 10G-EPON specifications and transmission experiments on a 10G-EPON prototype confirm that configuration (i) can add a 17km trunk fiber to a normal PON system with 10km access reach and 1 : 64 split (total 27km reach), while configuration (ii) can further expand the trunk fiber distance to 37km (total 47km reach). Network operators can select these configurations depending on their service areas.

  • A Study on Re-Constructibility of Event Structures

    Marika IZAWA  Toshiyuki MIYAMOTO  

     
    LETTER-Formal Approaches

      Pubricized:
    2020/03/27
      Vol:
    E103-D No:8
      Page(s):
    1810-1813

    The choreography realization problem is a design challenge for systems based on service-oriented architecture. In our previous studies, we studied the problem on a case where choreography was given by one or two scenarios and was expressed by an acyclic relation of events; we introduced the notion of re-constructibility as a property of acyclic relations to be satisfied. However, when choreography is defined by multiple scenarios, the resulting behavior cannot be expressed by an acyclic relation. An event structure is composed of an acyclic relation and a conflict relation. Because event structures are a generalization of acyclic relations, a wider class of systems can be expressed by event structures. In this paper, we propose the use of event structures to express choreography, introduce the re-constructibility of event structures, and show a necessary condition for an event structure to be re-constructible.

  • Facilitating Dynamic RT-QoS for Massive-Scale Autonomous Cyber-Physical Systems Open Access

    David W. McKEE  Xue OUYANG  Jie XU  

     
    INVITED PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1760-1767

    With the evolution of autonomous distributed systems such as smart cities, autonomous vehicles, smart control and scheduling systems there is an increased need for approaches to manage the execution of services to deliver real-time performance. As Cloud-hosted services are increasingly used to provide intelligence and analytic functionality to Internet of Things (IoT) systems, Quality of Service (QoS) techniques must be used to guarantee the timely service delivery. This paper reviews state-of-the-art QoS and Cloud techniques for real-time service delivery and data analysis. A review of straggler mitigation and a classification of real-time QoS techniques is provided. Then a mathematical framework is presented capturing the relationship between the host execution environment and the executing service allowing the response-times to predicted throughout execution. The framework is shown experimentally to reduce the number of QoS violations by 21% and provides alerts during the first 14ms provide alerts for 94% of future violations.

  • Realizability of Choreography Given by Two Scenarios

    Toshiki KINOSHITA  Toshiyuki MIYAMOTO  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    345-356

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., behavioral model) for each peer configuring the system from an abstract specification-which is referred to as choreography-is known as the choreography realization problem. A flow of interaction of peers is called a scenario. In our previous study, we showed conditions and an algorithm to synthesize concrete models when choreography is given by one scenario. In this paper, we extend the study for choreography given by two scenarios. We show necessary and sufficient conditions on the realizability of choreography under both cases where there exist conflicts between scenarios and no conflicts exist.

  • Increasing Splitting Ratio of Extended-Reach WDM/TDM-PON by Using Central Office Sited Automatic Gain Controlled SOAs

    Masamichi FUJIWARA  Ryo KOMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/02/02
      Vol:
    E100-B No:8
      Page(s):
    1388-1396

    To drastically increase the splitting ratio of extended-reach (40km span) time- and wavelength-division multiplexed passive optical networks (WDM/TDM-PONs), we modify the gain control scheme of our automatic gain controlled semiconductor optical amplifiers (AGC-SOAs) that were developed to support upstream transmission in long-reach systems. While the original AGC-SOAs are located outside the central office (CO) as repeaters, the new AGC-SOAs are located inside the CO and connected to each branch of an optical splitter in the CO. This arrangement has the potential to greatly reduce the costs of CO-sited equipment as they are shared by many more users if the new gain control scheme works properly even when the input optical powers are low. We develop a prototype and experimentally confirm its effectiveness in increasing the splitting ratio of extended-reach systems to 512.

  • Choreography Realization by Re-Constructible Decomposition of Acyclic Relations

    Toshiyuki MIYAMOTO  

     
    PAPER-Formal Methods

      Pubricized:
    2016/05/02
      Vol:
    E99-D No:6
      Page(s):
    1420-1427

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., a behavioral model) for each peer configuring the system from an abstract specification — which is referred to as choreography — is known as the choreography realization problem. In this paper, we consider the condition for the behavioral model when choreography is given by an acyclic relation. A new notion called re-constructible decomposition of acyclic relations is introduced, and a necessary and sufficient condition for a decomposed relation to be re-constructible is shown. The condition provides lower and upper bounds of the acyclic relation for the behavioral model. Thus, the degree of freedom for behavioral models increases; developing algorithms for synthesizing an intelligible model for users becomes possible. It is also expected that the condition is applied to the case where choreography is given by a set of acyclic relations.

  • Effective ONU Accommodation through PON Systems with Multi-Stage Splitter Configuration Using ALC Burst-Mode SOAs

    Masamichi FUJIWARA  Ken-Ichi SUZUKI  Naoto YOSHIMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E97-B No:2
      Page(s):
    432-440

    Multi-stage splitter configurations are often utilized in passive optical network (PON) systems to effectively accommodate widely-dispersed users. This paper introduces two types of more effective user accommodation approaches that place bidirectional optical amplifiers in several branches of the splitter inside the central office (CO); it allows a single optical line terminal (OLT) to support the coexistence of normal- and extended-distance areas and also the sharing by large numbers of optical network units (ONUs). To ease the issue of amplified spontaneous emission (ASE) noise, which is inherent in these system configurations, we propose to use a semiconductor optical amplifier (SOA)-based burst-mode optical amplifier with a fast automatic level control (ALC) circuit for upstream amplification.

  • Two-Level Service-Oriented Architecture Based on Product-Line

    Joonseok PARK  Mikyeong MOON  Keunhyuk YEOM  

     
    PAPER-Software Engineering

      Vol:
    E95-D No:12
      Page(s):
    2971-2981

    Software product-line engineering is the successful reuse of technology when applied to component-based software development. The main concept and structure of this technology is developing reusable core assets by applying commonality and variability, and then developing new software reusing these core assets. Recently, the emergence of service-oriented environments, called SOA, has provided flexible reuse environments by reusing pre-developed component structure as service units; this is platform-independent and can integrate into heterogeneous environments. The core asset of an SOA is the service. Therefore, we can increase the reusability of an SOA by combining it with the concept of a product-line. These days, there exists research that combines SOA and product-lines, taking into account reusability. However, current research does not consider the interaction between the provider and consumer in SOA environments. Furthermore, this research tends to focus on more fragmentary aspects of product-line engineering, such as modeling and proposing variability in services. In this paper, we propose a mechanism named 2-Level SOA, including a supporting environment. This proposed mechanism deploys and manages the reusable service. In addition, by reusing and customizing this reusable service, we can develop and generate new services. Our proposed approach provides a structure to maximize the flexibility of SOA, develops services that consider systematic reuse, and constructs service-oriented applications by reusing this pre-developed reusable service. Therefore, our approach can increase both efficiency and productivity when developing service-oriented applications.

  • Enhancement of Modulation Speed of RSOA by Using Instantaneous Injection/Depletion Current

    Akira AGATA  Takayuki SANO  Kosuke NISHIMURA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1252-1257

    We propose and demonstrate a simple and novel technique to accelerate the carrier injection/depletion processes in an RSOA by applying instantaneous injection/depletion currents at the transition edges of the modulation signal to force the carrier density to respond at a high speed and, as a result, to increase its modulation speed. We theoretically and experimentally show that, by using the proposed technique, it is possible to obtain 5 Gbit/s optical BPSK signal from an RSOA having a modulation bandwidth of only 0.9 GHz.

  • Optimum Threshold Value and BER Estimation of Remodulated OOK Signal Based on RSOA

    Dong-Min SEOL  Eui-Suk JUNG  Sang-Soo LEE  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E94-B No:7
      Page(s):
    2127-2129

    A loop-back WDM-PON based on a RSOA has lots of merits, however one-level of the upstream signal has downstream information under OOK modulation. These effects make difficult to define decision threshold and estimate BER. In order to solve this, we propose a mathematical model of remodulated OOK signal and experimentally demonstrate BER performance with the near optimum decision threshold achieved by the proposed model.

  • Enriching OSGi Service Composition with Web Services

    Choonhwa LEE  Sunghoon KO  Eunsam KIM  Wonjun LEE  

     
    LETTER-System Programs

      Vol:
    E92-D No:5
      Page(s):
    1177-1180

    This letter describes combining OSGi and Web Services in service composition. According to our approach, a composite service is described in WS-BPEL. Each component service in the description may be resolved to either an OSGi service or Web Service at runtime. The proposal can overcome current limitations with OSGi technology in terms of its geographical coverage and candidate service population available for service composition.

  • Simultaneous Frequency Conversion Technique Utilizing an SOA-MZI for Full-Duplex WDM Radio over Fiber Applications

    Jong-In SONG  Ho-Jin SONG  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    351-358

    Simultaneous all-optical frequency up/downconversion technique utilizing a single semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) for full-duplex WDM radio over fiber (RoF) applications is presented. Using this technique, error-free simultaneous upconversion and downconversion of RoF signals with a finite-length single mode fiber were experimentally demonstrated. The results show the potential of the proposed scheme for use in a cost-effective full-duplex WDM RoF link.

  • Automatically-Controlled C-Band Wavelength Conversion with Constant Output Power Based on Four-Wave Mixing in SOA's

    Koji OTSUBO  Tomoyuki AKIYAMA  Haruhiko KUWATSUKA  Nobuaki HATORI  Hiroji EBE  Mitsuru SUGAWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E88-C No:12
      Page(s):
    2358-2365

    We demonstrate the C-band wavelength conversion unit having functions of automatic wavelength recognition, power equalization, and elimination of original signal and pumping light for the first time, which is based on four-wave mixing (FWM) in semiconductor optical amplifiers (SOA's). The constructed unit automatically detects signal wavelength, sweeps wavelength of a pumping light, and adjusts center wavelengths of band pass filters and gain values of erbium-doped fiber amplifiers (EDFA's), in order to convert the wavelength of the signal to the arbitrary wavelength we set, and eliminate the original signal and pumping light after conversion. Amplification of the signal, pumping, and wavelength-converted lights compensates the detuning dependence of conversion efficiency and its asymmetry in the quantum-well (QW) SOA, to keep the power of the wavelength-converted light constant within the whole C-band region. The switching time of wavelength conversion by the unit is about a second, which is dominated by mechanical movement of the tunable filters. Wavelength-converted 2.5 and 10 Gb/s NRZ signals show clear eye-openings when the detuning is positive (ωp > ωs), and a 2-ps pulse train is also successfully wavelength-converted. To overcome the problem of the asymmetric conversion efficiency in the QW-SOA, we adopted quantum-dot (QD) SOA's. Although the 1.5 µm QD-SOA still shows its asymmetry, which will be improved by optimization of quantum dot structure, wavelength conversion of a 160 Gb/s RZ signal is demonstrated by the QD-SOA's. More improvement of the performance of the wavelength conversion unit should be possible by making switching time faster and installing the optimized QD-SOA's.

  • Improvement of Input Power Dynamic Range and Extinction Ratio for Wavelength Converters Based on Cross-Gain Modulation

    Joon-Hak BANG  Je-Soo KO  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:8
      Page(s):
    3455-3457

    A technique for improving the input power dynamic range and extinction ratio of wavelength converters based on cross-gain modulation in a semiconductor optical amplifier is presented.

  • 2R Limiter Circuit Using CW Holding Beam for the XGM Wavelength Converter

    Joo-Youp KIM  Jae-Hyeok LEE  Yong-Ook KIM  Jeung-Mo KANG  Sang-Kook HAN  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E87-B No:10
      Page(s):
    2886-2894

    We have proposed and theoretically verified a 2R (reshaping and regeneration) limiter circuit using continuous wave (CW) holding beam for cross-gain modulation (XGM) wavelength converter, through simulation. The gain clamping effect of semiconductor optical amplifier (SOA), which is caused by CW holding beam injected into SOA, was used to obtain the accurate optical gain and phase conditions for SOA's in 2R limiter circuit. XGM wavelength converter with the proposed 2R limiter circuit provides higher extinction ratio (ER) as well as more enhanced operation speed than any other wavelength converter. Our numerical results show that after the wavelength-converted signal from XGM wavelength converter passed the 2R limiter circuit, it was re-inverted with the improved ER of 30 dB at 5 Gb/s. In case of high-speed operation, great enhancement to decrease power penalty of about 12 dB was shown at 10 Gb/s.

  • Two-Stage Integrated SOA Modulators: A Novel Architecture for Efficient Photonic Mixers of Microwave Signals

    Salvador SALES  Jose CAPMANY  Beatriz ORTEGA  Daniel PASTOR  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1263-1268

    Efficient mixing of microwave signals is an important issue for new radio over fiber telecommunications systems. In this paper, we propose a novel device based on two cascaded semiconductor optical amplifiers working in a non-linear regime and a loss section in between Results show potential performance improvement as compared to other technological approaches for photonic microwave mixers.

  • Wavelength-Selectable Microarray Light Sources for DWDM Photonic Networks

    Takao MORIMOTO  Kenichiro YASHIKI  Koji KUDO  Tatsuya SASAKI  

     
    INVITED PAPER-Active Devices

      Vol:
    E85-C No:4
      Page(s):
    982-989

    Various types of wavelength-selectable light sources (WSLs) and wavelength-tunable laser diodes (LDs) have been developed, and the one based on an array of distributed feedback (DFB) laser diodes (LDs) has the advantage of tuning that is both simple and stable tuning. It requires only the selection of a DFB-LD and a temperature control. We report on monolithically integrated WSLs with a DFB-LD array, multimode interference (MMI) coupler, semiconductor optical amplifier (SOA), and electro-absorption (EA) modulator. To make them compact, we introduced microarray structures and to ensure that they were easy to fabricate, we used selective area growth. For the WSL with an integrated EA modulator, we developed a center-temperature-shift method that optimizes the detuning wavelength between the lasing wavelength and the absorption edge wavelength of the EA-modulator. Using this method, we obtained a uniform extinction ratio and were able to demonstrate error-free 2.5-Gb/s transmission over a 600-km fiber span. A CW-WSL without an EA-modulator should provide enough output power to compensate the loss caused by the external modulators, but the high-power operation of a CW-WSL is sensitive to optical feedback from the front facet. We therefore used an angled facet in our WSLs and eliminated a mode hop problem. More than 20 mW of fiber-coupled power was obtained over 23 ITU-T channels on a 50-GHz grid.

  • Low Noise Figure (6.3 dB) Polarization Insensitive Spot-Size Converter Integrated Semiconductor Optical Amplifier

    Ken MORITO  Mitsuru EKAWA  Takayuki WATANABE  Yuji KOTAKI  

     
    PAPER-Active Devices

      Vol:
    E85-C No:4
      Page(s):
    990-994

    Integration of spot-size converters (SSCs) with semiconductor optical amplifiers (SOAs) that improves chip-fiber optical coupling is inevitable for realizing high performance SOA modules. In this paper SSCs that can be easily integrated with SOAs and have little influence on the polarization sensitivity have been studied. We found that polarization insensitive active width-tapered SSCs can be realized by an optimum waveguide design of tensile-strained bulk structures. The SOA module exhibited large fiber-to-fiber gain (> 19 dB), small polarization sensitivity (< 0.4 dB), high fiber-coupled saturation output power (> +11.7 dBm) and record low module noise figure (< 6.3 dB) for the signal wavelength range of 1530-1560 nm.

  • Wavelength-Tunable Semiconductor Light Sources for WDM Applications

    Yuichi TOHMORI  Hiroyuki ISHII  Hiromi OOHASHI  Yuzo YOSHIKUNI  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    21-26

    This paper describes the recent progress made in developing wavelength tunable semiconductor light sources for WDM applications. Wide and quasi-continuous wavelength tunings were investigated for a wavelength-selectable laser and a wavelength tunable distributed Bragg reflector (DBR) laser having a super structure grating (SSG). A wavelength-selectable laser consisting of a DFB laser array, a multi-mode interferometer (MMI), and a semiconductor optical amplifier (SOA) demonstrated a quasi-continuous tuning range of 46.9 nm by using temperature control. A wavelength-tunable DBR laser with SSG exhibited a quasi-continuous tuning range of 62.4 nm by using three tuning current controls. Wavelength stabilization was also demonstrated under the temperature variations of 5.

  • All-Optical Wavelength Conversion Using a Fabry-Perot Semiconductor Optical Amplifier

    Masumi SAITOH  Mitsuru TAKENAKA  Byongjin MA  Yoshiaki NAKANO  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E84-C No:12
      Page(s):
    1975-1978

    We describe a simple all-optical wavelength converter based on a Fabry-Perot semiconductor optical amplifier (FPSOA). We measure its static characteristics in detail and successfully demonstrate its dynamic wavelength-conversion operation (both inverted and non-inverted) at 2.5 Gbit/s. This is the first demonstration of FPSOA-based wavelength conversion. Quasi-digital response is also observed. Low input power, ease of fabrication and good compatibility with WDM networks are important advantages of FPSOA.

1-20hit(24hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.