1-3hit |
Qing LIU Tomohiro ODAKA Jousuke KUROIWA Haruhiko SHIRAI Hisakazu OGURA
This paper presents an artificial fish swarm algorithm (AFSA) to solve the multicast routing problem, which is abstracted as a Steiner tree problem in graphs. AFSA adopts a 0-1 encoding scheme to represent the artificial fish (AF), which are then subgraphs in the original graph. For evaluating each AF individual, we decode the subgraph into a Steiner tree. Based on the adopted representation of the AF, we design three AF behaviors: randomly moving, preying, and following. These behaviors are organized by a strategy that guides AF individuals to perform certain behaviors according to certain conditions and circumstances. In order to investigate the performance of our algorithm, we implement exhaustive simulation experiments. The results from the experiments indicate that the proposed algorithm outperforms other intelligence algorithms and can obtain the least-cost multicast routing tree in most cases.
Qing LIU Tomohiro ODAKA Jousuke KUROIWA Haruhiko SHIRAI Hisakazu OGURA
A new artificial fish swarm algorithm (AFSA) for solving the multiple knapsack problem (MKP) is introduced in this paper. In the proposed AFSA, artificial fish (AF) individuals are only allowed to search the region near constraint boundaries of the problem to be solved. For this purpose, several behaviors to be performed by AF individuals, including escaping behavior, randomly moving behavior, preying behavior and following behavior, were specially designed. Exhaustive experiments were implemented in order to investigate the proposed AFSA's performance. The results demonstrated the proposed AFSA has the ability of finding high-quality solutions with very fast speed, as compared with some other versions of AFSA based on different constraint-handling methods. This study is also meaningful for solving other constrained problems.
Qing LIU Tomohiro ODAKA Jousuke KUROIWA Hisakazu OGURA
An artificial fish swarm algorithm for solving symbolic regression problems is introduced in this paper. In the proposed AFSA, AF individuals represent candidate solutions, which are represented by the gene expression scheme in GEP. For evaluating AF individuals, a penalty-based fitness function, in which the node number of the parse tree is considered to be a constraint, was designed in order to obtain a solution expression that not only fits the given data well but is also compact. A number of important conceptions are defined, including distance, partners, congestion degree, and feature code. Based on the above concepts, we designed four behaviors, namely, randomly moving behavior, preying behavior, following behavior, and avoiding behavior, and present their respective formalized descriptions. The exhaustive simulation results demonstrate that the proposed algorithm can not only obtain a high-quality solution expression but also provides remarkable robustness and quick convergence.