Keyword Search Result

[Keyword] asynchronous system(6hit)

1-6hit
  • Statistical Analysis Driven Synthesis of Application Specific Asynchronous Systems

    Koji OHASHI  Mineo KANEKO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:3
      Page(s):
    659-669

    In this paper, we propose an effective asynchronous datapath synthesis system to optimize statistical performance of asynchronous systems. The proposed algorithm is a heuristic method which simultaneously performs scheduling and resource binding. During the design process, decisions will be made based on the statistical schedule length analysis. It is demonstrated that asynchronous datapaths with the reduced mean total computation time are successfully synthesized for some datapath synthesis benchmarks.

  • Extended One-Shot Decorrelating Detector for Asynchronous DS/CDMA Systems

    Jee Woong KANG  Kwang Bok (Ed) LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1901-1909

    We propose an extended one-shot decorrelating detector (EOS-DD) which may be viewed as a generalized double window multiuser detector (DW-MD) for asynchronous direct-sequence code-division multiple-access (DS/CDMA) systems in frequency selective fading environments. The EOS-DD extends a processing window and the received signal over an extended window is utilized for decorrelating. The effects of the window size on BER performance are investigated by numerical analysis. Analysis and simulation show that the EOS-DD is superior to the one-shot decorrelating detector (OS-DD) and finite memory length truncated decorrelating detector (FIR-DD) in terms of noise enhancement and near-far resistance. It is also shown that the EOS-DD with window size 4 can provide significantly improved performance compared to the EOS-DD with window size 2.

  • B-Ternary Asynchronous Digital System under Relativity Delay

    Yasunori NAGATA  Masao MUKAIDONO  

     
    PAPER-Computer System Element

      Vol:
    E86-D No:5
      Page(s):
    910-919

    Some of the recent digital systems have a serious clock skew problem due to huge hardware implementation and high-speed operation in VLSI's. To overcome this problem, clock distribution techniques and, more notably, asynchronous system design methodologies have been investigated. Since the latest asynchronous digital systems use two-rail logic with two-phase data transfer manner, more than two-fold hardware is required in comparison with the synchronous system. In this article, we present a design of asynchronous digital system which is based on B-ternary logic that can process binary data. The system which is based on speed-independent mode consists of data-path and its controller. Then we provide B-ternary two-phase binary data processing in the data-path and its control procedure with hand-shake protocol. To implement the system some functional elements are presented, that is, a ternary-in/binary-out register with request/acknowledge circuits and a control unit. These functional elements are fabricated with ternary NOR, NAND, INV gates and ternary-in/binary-out D-FF (D-elements). The B-ternary based asynchronous circuit has less interconnections, achives race-free operations and makes use of conventional binary powerful design tools. Particularly, we extend the speed-independent delay model to relativity delays in order to reduce hardware overhead of checking memory stability in the system. As a concrete example, a carry-completion type asynchronous adder system is demonstrated under extended speed-independent mode to show the validity of the extension.

  • Experiments on Fast Cell Search Algorithm Using Scrambling Code Masking for Inter-Cell Asynchronous W-CDMA System

    Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2102-2109

    This paper presents the fast cell search time performance based on laboratory and field experiments of a 2-step cell search algorithm that uses scrambling code masking for inter-cell asynchronous wideband DS-CDMA (W-CDMA) mobile radio. The scrambling code is masked at different time positions during each scrambling period on the forward-link common control channel (CCH) to detect the scrambling code timing at the mobile receiver. Experiments were conducted using the CCH-to-dedicated traffic channel (DTCH) power ratio, R of 3 dB, 10 DTCHs, and 16 scrambling codes in a single-cell and two-cell models. The field experimental results show that the cell search time of about 600 msec was achieved in vehicular environments at the detection probability of 90% and the average received Eb/N0 (N0 is the background noise without interference) of 13-15 dB for DTCH, even in the worst case scenario when the received signal power ratios of the CCH from two cell sites were 0 dB. The cell search time that was achieved with the 3-step cell search algorithm previously proposed by the authors is estimated from the experimental results; the cell search can be accomplished within about 720 msec at a probability of 96% for 512 scrambling codes and 16 scrambling code groups.

  • Fast Cell Search Algorithm in Idle Mode for Inter-Cell Asynchronous W-CDMA Mobile Radio

    Yukiko HANADA  Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1610-1618

    This paper proposes a fast target cell search algorithm used during intermittent reception in the idle mode of a mobile station (MS) for inter-cell asynchronous W-CDMA mobile radio. In the proposed scheme, since the base station (BS) informs a MS of the relative average received timing differences between the scrambling code of its BS and those of the surrounding BSs in addition to the scrambling codes, the MS only has to search over the restricted timing duration for the informed scrambling codes. Therefore, the target cell search (i.e., in which the number of candidate cells is limited) can be achieved as fast as in inter-cell synchronous systems. A computer simulation demonstrates that the target cell search time per one super frame (= 720 msec) at the cell detection probability of 95% is accomplished within 5.9 msec (this corresponds to the intermittent time ratio required for the target cell search to become 0.82%), when the transmit power ratios of the common pilot channel (CPICH) and common control physical channel (CCPCH) required for cell search to a dedicated traffic channel (DTCH) are 3 and 6 dB, respectively. In this simulation, the average power delay profile was generated by averaging the instantaneous ones (it was coherently accumulated pilot signal over a 512-chip duration (= 125 µsec) using 4 correlators) over a period of three super frames for 19 target cell-site candidates using the search window with a 10-chip duration (= 2.4 µsec).

  • Fast Cell Search Algorithm in Inter-Cell Asynchronous DS-CDMA Mobile Radio

    Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:7
      Page(s):
    1527-1534

    Inter-cell asynchronous DS-CDMA cellular mobile radio allows continuous system deployment from outdoors to indoors since no outer timing source is required. All the forward link channels(control and traffic channels)of each cell site are first spread by orthogonal short spreading codes and then randomized by a long random code uniquely assigned to each cell site. However, inter-cell asynchronous systems generally require much longer cell search time than inter-cell synchronous systems. This paper proposes a fast cell search algorithm based on the periodic masking of the long random code when transmitting the control channel(CCH)signal. The same short spreading code is used for the CCHs of all cell sites. The same short spreading code periodically appears in the signals transmitted from all cell sites so the mobile station can detect the long random code timing(or more precisely the masking timing)by using a matched filter. By grouping the long random codes used in the system and transmitting a group identification(GI)code from each cell site during the masking period, we can avoid searching all long random codes. This significantly reduces the cell search time. Simulation results demonstrate that cell search can be accomplished in less than 500 ms at 90% of the locations when the number of long random codes(having a repetition period of 10 ms)is 512 and the number of those per group is 32.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.