1-10hit |
Jinkyu KANG Seongah JEONG Hoojin LEE
In this letter, we analyze the error rate performance of M-ary coherent free-space optical (FSO) communications under strong atmospheric turbulence. Specifically, we derive the exact error rates for M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) based on moment-generating function (MGF) with negative exponential distributed turbulence, where maximum ratio combining (MRC) receiver is adopted to mitigate the turbulence effects. Additionally, by evaluating the asymptotic error rate in high signal-to-noise ratio (SNR) regime, it is possible to effectively investigate and predict the error rate performance for various system configurations. The accuracy and the effectiveness of our theoretical analyses are verified via numerical results.
Jinkyu KANG Seongah JEONG Hoojin LEE
In this letter, we derive a novel and accurate closed-form bit error rate (BER) approximation of the optical wireless communications (OWC) systems for the sub-carrier intensity modulation (SIM) employing binary phase-shift keying (BPSK) with multiple transmit and single receive apertures over strong atmospheric turbulence channels, which makes it possible to effectively investigate and predict the BER performance for various system configurations. Furthermore, we also derive a concise asymptotic BER formula to quantitatively evaluate the asymptotically achievable error performance (i.e., asymptotic diversity and combining gains) in the high signal-to-noise (SNR) regimes. Some numerical results are provided to corroborate the accuracy and effectiveness of our theoretical expressions.
Phuc V. TRINH Thanh V. PHAM Anh T. PHAM
Both spatial diversity and multihop relaying are considered to be effective methods for mitigating the impact of atmospheric turbulence-induced fading on the performance of free-space optical (FSO) systems. Multihop relaying can significantly reduce the impact of fading by relaying the information over a number of shorter hops. However, it is not feasible or economical to deploy relays in many practical scenarios. Spatial diversity could substantially reduce the fading variance by introducing additional degrees of freedom in the spatial domain. Nevertheless, its superiority is diminished when the fading sub-channels are correlated. In this paper, our aim is to study the fundamental performance limits of spatial diversity suffering from correlated Gamma-Gamma (G-G) fading channels in multihop coherent FSO systems. For the performance analysis, we propose to approximate the sum of correlated G-G random variables (RVs) as a G-G RV, which is then verified by the Kolmogorov-Smirnov (KS) goodness-of-fit statistical test. Performance metrics, including the outage probability and the ergodic capacity, are newly derived in closed-form expressions and thoroughly investigated. Monte-Carlo (M-C) simulations are also performed to validate the analytical results.
Banibrata BAG Akinchan DAS Aniruddha CHANDRA Chayanika BOSE
Free-space optical (FSO) communication, which offers better data rate at a lower cost compared to radio-frequency (RF) backhauls, and is much easier to setup and maintain than optical cables, is gaining attention as an attractive substitute. Average capacity is one of the main performances metrics to understand the connectivity and data rates of a communication system but the performance analysis for mixed RF/FSO link is not straightforward as the RF link and the FSO link experiences different atmospheric perturbations. In this paper, we have investigated the ergodic capacity of a dual-hop mixed RF/FSO communication system realized with an average power scaling (APS) based amplify and forward (AF) relay. Assuming moderate to strong atmospheric turbulence, the FSO link is modeled by gamma-gamma distribution while it is assumed that the RF link experiences multipath Rayleigh fading. Simple analytical methods have been devised for obtaining concise closed-form expressions for ergodic capacity under four different rate/ power adaptation policies and are validated through extensive Monte Carlo simulations.
This paper proposes and theoretically analyzes the performance of amplify-and-forward (AF) relaying free-space optical (FSO) systems using avalanche photodiode (APD) over atmospheric turbulence channels. APD is used at each relay node and at the destination for optical signal conversion and amplification. Both serial and parallel relaying configurations are considered and the subcarrier binary phase-shift keying (SC-BPSK) signaling is employed. Closed-form expressions for the outage probability and the bit-error rate (BER) of the proposed system are analytically derived, taking into account the accumulating amplification noise as well as the receiver noise at the relay nodes and at the destination. Monte-Carlo simulations are used to validate the theoretical analysis, and an excellent agreement between the analytical and simulation results is confirmed.
Phuc V. TRINH Ngoc T. DANG Truong C. THANG Anh T. PHAM
This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.
We theoretically study the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbol-error rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by log-normal and the gamma-gamma distributions for weak and moderate-to-strong turbulence conditions. We quantitatively discuss the influence of index of refraction structure parameter, link distance, and different MIMO configurations on the system ASER. We also analytically derive and discuss the MIMO/FSO average (ergodic) channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE), under the impact of various channel conditions. Monte Carlo simulations are also performed to validate the mathematical analysis, and a good agreement between numerical and simulation results is confirmed.
Chedlia BEN NAILA Kazuhiko WAKAMORI Mitsuji MATSUMOTO
Radio frequency on free-space optical (RoFSO) technology is regarded as a new universal platform for enabling seamless convergence of fiber and FSO communication networks, thus extending broadband connectivity to underserved areas. In this paper, we investigate the performance to characterize the transmission of code division multiple access (CDMA) based wireless signals over RoFSO system using aperture averaging (AA) technique under strong turbulence conditions. An analytical model including a modified carrier-to-noise-plus- interference ratio (CNIR) form and a novel closed-form expression for the bit-error rate (BER) is derived. Unlike earlier work, our model takes into consideration the effect of using the AA technique modeled by the gamma-gamma distribution, the optical noises, the intermodulation distortion term due to the laser diode non-linearity and the multiple interference access. By investigating the impact of AA on our model in the strong turbulence regime, we show that there is a design trade-off between the receiver lens aperture and the number of users to achieve a required CNIR ensuring a substantial scintillation fade reduction. The presented work can be used as baseline for the design and performance evaluation of the RoFSO system's ability to transmit different broadband wireless services signals over turbulent FSO links in real scenarios.
Anh T. PHAM Tu A. LUU Ngoc T. DANG
We propose Turbo-coded two-dimensional (2-D) free-space optical (FSO) CDMA systems for broadband access networks. The performance bound for the proposed system over atmospheric turbulence channels is obtained considering multiple-access interference (MAI) and receiver noise. The results show that the proposed system offers a better performance than that of previously proposed ones. Also, it has a better tolerance to the atmospheric turbulence and the increase in the number of users.
Kamugisha KAZAURA Kazunori OMAE Toshiji SUZUKI Mitsuji MATSUMOTO Edward MUTAFUNGWA Tadaaki MURAKAMI Koichi TAKAHASHI Hideki MATSUMOTO Kazuhiko WAKAMORI Yoshinori ARIMOTO
Free-space optical communication systems can provide high-speed, improved capacity, cost effective and easy to deploy wireless networks. Experimental investigation on the next generation free-space optical (FSO) communication system utilizing seamless connection of free-space and optical fiber links is presented. A compact antenna which utilizes a miniature fine positioning mirror (FPM) for high-speed beam control and steering is described. The effect of atmospheric turbulence on the beam angle-of-arrival (AOA) fluctuations is shown. The FPM is able to mitigate the power fluctuations at the fiber coupling port caused by this beam angle-of-arrival fluctuations. Experimental results of the FSO system capable of offering stable performance in terms of measured bit-error-rate (BER) showing error free transmission at 2.5 Gbps over extended period of time and improved fiber received power are presented. Also presented are performance results showing stable operation when increasing the FSO communication system data rate from 2.5 Gbps to 10 Gbps as well as WDM experiments.