1-2hit |
I Wayan MUSTIKA Nifty FATH Selo SULISTYO Koji YAMAMOTO Hidekazu MURATA
Femtocell has been considered as a key promising technology to improve the capacity of a cellular system. However, the femtocells deployed inside a macrocell coverage are potentially suffered from excessive interference. This paper proposes a novel radio resource optimization in closed access femtocell networks based on bat algorithm. Bat algorithm is inspired by the behavior of bats in their echolocation process. While the original bat algorithm is designed to solve the complex optimization problem in continuous search space, the proposed modified bat algorithm extends the search optimization in a discrete search space which is suitable for radio resource allocation problem. The simulation results verify the convergence of the proposed optimization scheme to the global optimal solution and reveal that the proposed scheme based on modified bat algorithm facilitates the improvement of the femtocell network capacity.
Bin YANG Yuliang LU Kailong ZHU Guozheng YANG Jingwei LIU Haibo YIN
The rapid development of information techniques has lead to more and more high-dimensional datasets, making classification more difficult. However, not all of the features are useful for classification, and some of these features may even cause low classification accuracy. Feature selection is a useful technique, which aims to reduce the dimensionality of datasets, for solving classification problems. In this paper, we propose a modified bat algorithm (BA) for feature selection, called MBAFS, using a SVM. Some mechanisms are designed for avoiding the premature convergence. On the one hand, in order to maintain the diversity of bats, they are guided by the combination of a random bat and the global best bat. On the other hand, to enhance the ability of escaping from local optimization, MBAFS employs one mutation mechanism while the algorithm trapped into local optima. Furthermore, the performance of MBAFS was tested on twelve benchmark datasets, and was compared with other BA based algorithms and some well-known BPSO based algorithms. Experimental results indicated that the proposed algorithm outperforms than other methods. Also, the comparison details showed that MBAFS is competitive in terms of computational time.