1-3hit |
We present a hierarchical replicated state machine (H-RSM) and its corresponding consensus protocol D-Paxos for replication across multiple data centers in the cloud. Our H-RSM is based on the idea of parallel processing and aims to improve resource utilization. We detail D-Paxos and theoretically prove that D-Paxos implements an H-RSM. With batching and logical pipelining, D-Paxos efficiently utilizes the idle time caused by high-latency message transmission in a wide-area network and available bandwidth in a local-area network. Experiments show that D-Paxos provides higher throughput and better scalability than other Paxos variants for replication across multiple data centers. To predict the optimal batch sizes when D-Paxos reaches its maximum throughput, an analytical model is developed theoretically and validated experimentally.
For hybrid Multimedia-on-Demand (MoD) systems which support broadcast, batch and interactive services, the charging scheme employed plays an important role in the delivery of good service quality to users, while also determining the revenue generated for the service provider. In this letter a new charging scheme is proposed. This scheme provides the same quality of service to the users as previous charging schemes while providing higher revenue. Numerical results are presented to evaluate the performance of the new charging scheme in comparison with previous schemes.
Vicki W.H. LEE Eric Wing Ming WONG King-Tim KO Kit-Sang TANG
In this letter, we study a hybrid Multimedia-on-Demand (MoD) system which provides broadcast, batch and interactive services. An analytical model for such an MoD system is provided. Numerical results show that with proper design, the system can provide better performance than those systems which only provide any subset of two services.