Keyword Search Result

[Keyword] bin packing(4hit)

1-4hit
  • Optimal Online Bin Packing Algorithms for Some Cases with Two Item Sizes

    Hiroshi FUJIWARA  Masaya KAWAGUCHI  Daiki TAKIZAWA  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1100-1110

    The bin packing problem is a problem of finding an assignment of a sequence of items to a minimum number of bins, each of capacity one. An online algorithm for the bin packing problem is an algorithm that irrevocably assigns each item one by one from the head of the sequence. Gutin, Jensen, and Yeo (2006) considered a version in which all items are only of two different sizes and the online algorithm knows the two possible sizes in advance, and gave an optimal online algorithm for the case when the larger size exceeds 1/2. In this paper we provide an optimal online algorithm for some of the cases when the larger size is at most 1/2, on the basis of a framework that facilitates the design and analysis of algorithms.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Asymptotic Approximation Ratios for Certain Classes of Online Bin Packing Algorithms

    Hiroshi FUJIWARA  Yuta WANIKAWA  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2020/10/12
      Vol:
    E104-D No:3
      Page(s):
    362-369

    The performance of online algorithms for the bin packing problem is usually measured by the asymptotic approximation ratio. However, even if an online algorithm is explicitly described, it is in general difficult to obtain the exact value of the asymptotic approximation ratio. In this paper we show a theorem that gives the exact value of the asymptotic approximation ratio in a closed form when the item sizes and the online algorithm satisfy some conditions. Moreover, we demonstrate that our theorem serves as a powerful tool for the design of online algorithms combined with mathematical optimization.

  • Performance Study of Packing Aggregation in Wireless Sensor Networks

    Jianxin CHEN  Yuhang YANG  Maode MA  Yong OUYANG  

     
    LETTER-Network

      Vol:
    E90-B No:1
      Page(s):
    160-163

    Energy-saving is crucial in wireless sensor networks. In this letter, we address the issue of lossless packing aggregation with the aim of reducing energy lost in cluster-model wireless sensor networks. We propose a performance model based on the bin packing problem to study the packing efficiency. It is evaluated in terms of control header size, and validated by simulations.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.