Keyword Search Result

[Keyword] bit synchronization(6hit)

1-6hit
  • Balance Differential Coherent Bit Synchronization Algorithm for GNSS Receiver

    Dengyun LEI  Weijun LU  Yanbin ZHANG  Dunshan YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:6
      Page(s):
    1133-1140

    Due to low signal-to-carrier ratio and high dynamic, the frequency deviation affects the bit synchronization in GNSS receiver. This paper proposes a balance differential coherent bit synchronization algorithm, which uses the differential coherent method to eliminate the influence of the frequency deviation. By enlarging the differential distance, the proposed algorithm achieves higher bit synchronization rates. Combining two complementary differential coherent parts, the proposed algorithm avoids the unbalance problem and the attenuation of accumulation. Furthermore, a general architecture is presented to reduce the system complexity. Experimental results show that the proposed algorithm improves the sensitivity of bit synchronization by 3∼7dB compared with the previous method.

  • A GPS Bit Synchronization Method Based on Frequency Compensation

    Xinning LIU  Yuxiang NIU  Jun YANG  Peng CAO  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:4
      Page(s):
    746-753

    TTFF (Time-To-First-Fix) is an important indicator of GPS receiver performance, and must be reduced as much as possible. Bit synchronization is the pre-condition of positioning, which affects TTFF. The frequency error leads to power loss, which makes it difficult to find the bit edge. The conventional bit synchronization methods only work well when there is no or very small frequency error. The bit synchronization process is generally carried out after the pull-in stage, where the carrier loop is already stable. In this paper, a new bit synchronization method based on frequency compensation is proposed. Through compensating the frequency error, the new method reduces the signal power loss caused by the accumulation of coherent integration. The performances of the new method in different frequency error scenarios are compared. The parameters in the proposed method are analyzed and optimized to reduce the computational complexity. Simulation results show that the new method has good performance when the frequency error is less than 25Hz. Test results show that the new method can tolerate dynamic frequency errors, and it is possible to move the bit synchronization to the pull-in process to reduce the TTFF.

  • A 10-Gb/s Optical Asynchronous Packet Receiver with a Fast Bit-Synchronization Circuit

    Akio TAJIMA  Hiroaki TAKAHASHI  Yoshiharu MAENO  Soichiro ARAKI  Naoya HENMI  

     
    PAPER-Communication Networks

      Vol:
    E82-B No:8
      Page(s):
    1121-1126

    A novel 10-Gb/s fast acquisition bit-synchronization circuit for use in a Tb/s throughput optical packet switch has been developed. The circuit is a best-sampled-data-select type based on multiple phase-clocks, and it processes the asynchronous input packets into a synchronous data stream in a serial manner, which is advantageous in terms of circuit scale and consumption power compared with the parallel processing type. The circuit was developed using Si-bipolar ultrahigh-speed gate arrays and it was used to develop a 10-Gb/s optical asynchronous packet receiver module. The core logic of this circuit module required about 100 gates, consume 6 W, and the size of the module was reduced to only 170 mm (W)130 mm (D) 10 mm (H). Using the receiver module, a fast acquisition time of 9 bits and receiver sensitivity penalty of less than 1.5 dB due to re-synchronization were measured.

  • A 10-Gb/s Optical Asynchronous Packet Receiver with a Fast Bit-Synchronization Circuit

    Akio TAJIMA  Hiroaki TAKAHASHI  Yoshiharu MAENO  Soichiro ARAKI  Naoya HENMI  

     
    PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1387-1392

    A novel 10-Gb/s fast acquisition bit-synchronization circuit for use in a Tb/s throughput optical packet switch has been developed. The circuit is a best-sampled-data-select type based on multiple phase-clocks, and it processes the asynchronous input packets into a synchronous data stream in a serial manner, which is advantageous in terms of circuit scale and consumption power compared with the parallel processing type. The circuit was developed using Si-bipolar ultrahigh-speed gate arrays and it was used to develop a 10-Gb/s optical asynchronous packet receiver module. The core logic of this circuit module required about 100 gates, consume 6 W, and the size of the module was reduced to only 170 mm (W)130 mm (D) 10 mm (H). Using the receiver module, a fast acquisition time of 9 bits and receiver sensitivity penalty of less than 1.5 dB due to re-synchronization were measured.

  • Skew-Compensation Technique for Parallel Optical Interconnections

    Takeshi SAKAMOTO  Nobuyuki TANAKA  Yasuhiro ANDO  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-B No:8
      Page(s):
    1162-1168

    We have developed a low-latency, error-correcting-code-(ECC-)adaptable skew-compensation technique, which is needed for high-speed and long-distance parallel optical interconnections. A new frame-coding technique called shuffled mB1C encoding, which requires no clock-rate conversion circuit and no data buffering, and a new skew-measurement method which is suitable for ECC adaptation have been developed for the compensation. Full-digital skew-compensation circuits using these new techniques were able to compensate for a two-clock-cycle skew, even when one transmission channel was removed. The maximum latency for skew compensation was only five clock cycles.

  • Skew-Compensation Technique for Parallel Optical Interconnections

    Takeshi SAKAMOTO  Nobuyuki TANAKA  Yasuhiro ANDO  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1428-1434

    We have developed a low-latency, error-correcting-code-(ECC-)adaptable skew-compensation technique, which is needed for high-speed and long-distance parallel optical interconnections. A new frame-coding technique called shuffled mB1C encoding, which requires no clock-rate conversion circuit and no data buffering, and a new skew-measurement method which is suitable for ECC adaptation have been developed for the compensation. Full-digital skew-compensation circuits using these new techniques were able to compensate for a two-clock-cycle skew, even when one transmission channel was removed. The maximum latency for skew compensation was only five clock cycles.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.