Keyword Search Result

[Keyword] carrier frequency offset(56hit)

1-20hit(56hit)

  • Performance of NR Physical Random Access Channel in the Presence of Carrier Frequency Offset in Millimeter-Wave Bands Open Access

    Takamichi CHIBA  Mamoru SAWAHASHI  Yoshihisa KISHIYAMA  Satoshi SUYAMA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E108-B No:2
      Page(s):
    164-177

    This paper presents the miss-detection probability (MDP) of the Physical Random Access Channel (PRACH) with a short sequence for the 3GPP New Radio specifications in the presence of carrier frequency offset (CFO) in millimeter-wave bands. At a base-station receiver, the correlation of every repetition unit of the PRACH-preamble sequence between the received PRACH signal and the PRACH-preamble sequence candidates is computed using a matched filter in the frequency domain. This is followed by combining the correlations of the repeated PRACH-preamble sequences that correspond to the fast Fourier transform blocks in the time domain. The multiple correlations of the repeated PRACH sequences are combined by coherent combining with in-phase and quadrature components or by combining in squared form in the power domain, followed by the detection of the sequence and received timing of the desired PRACH. This paper first investigates the effect of the repetition of the PRACH-preamble sequence on reducing the MDP for various 3GPP Tapped Delay Line channel models in non-line-of-sight (NLOS) and LOS environments. Next, we establish the best combining method for the correlations of the repeated PRACH sequences from two candidates based on the PRACH MDP for various types of PRACH formats and for various subcarrier spacings (SCSs) from 120 kHz to 960 kHz in the presence of CFO based on extensive simulations. We also show that a wide SCS of up to 960 kHz is effective in reducing the PRACH MDP in the presence of CFO for the frequency stability of a set of user equipment of up to 3 ppm at the carrier frequency of 60 GHz.

  • Joint CFO and DOA Estimation Based on MVDR Criterion in Interleaved OFDMA/SDMA Uplink Open Access

    Chih-Chang SHEN  Wei JHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    1066-1070

    This letter deals with joint carrier frequency offset (CFO) and direction of arrival (DOA) estimation based on the minimum variance distortionless response (MVDR) criterion for interleaved orthogonal frequency division multiple access (OFDMA)/space division multiple access (SDMA) uplink systems. In order to reduce the computational load of two-dimensional searching based methods, the proposed method includes only once polynomial CFO rooting and does not require DOA paring, hence it raises the searching efficiency. Several simulation results are provided to illustrate the effectiveness of the proposed method.

  • Bayesian Learning-Assisted Joint Frequency Tracking and Channel Estimation for OFDM Systems

    Hong-Yu LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/03/30
      Vol:
    E106-A No:10
      Page(s):
    1336-1342

    Orthogonal frequency division multiplexing (OFDM) is very sensitive to the carrier frequency offset (CFO). The CFO estimation precision heavily makes impacts on the OFDM performance. In this paper, a new Bayesian learning-assisted joint CFO tracking and channel impulse response estimation is proposed. The proposed algorithm is modified from a Bayesian learning-assisted estimation (BLAE) algorithm in the literature. The BLAE is expectation-maximization (EM)-based and displays the estimator mean square error (MSE) lower than the Cramer-Rao bound (CRB) when the CFO value is near zero. However, its MSE value may increase quickly as the CFO value goes away from zero. Hence, the CFO estimator of the BLAE is replaced to solve the problem. Originally, the design criterion of the single-time-sample (STS) CFO estimator in the literature is maximum likelihood (ML)-based. Its MSE performance can reach the CRB. Also, its CFO estimation range can reach the widest range required for a CFO tracking estimator. For a CFO normalized by the sub-carrier spacing, the widest tracking range required is from -0.5 to +0.5. Here, we apply the STS CFO estimator design method to the EM-based Bayesian learning framework. The resultant Bayesian learning-assisted STS algorithm displays the MSE performance lower than the CRB, and its CFO estimation range is between ±0.5. With such a Bayesian learning design criterion, the additional channel noise power and power delay profile must be estimated, as compared with the ML-based design criterion. With the additional channel statistical information, the derived algorithm presents the MSE performance better than the CRB. Two frequency-selective channels are adopted for computer simulations. One has fixed tap weights, and the other is Rayleigh fading. Comparisons with the most related algorithms are also been provided.

  • Blind Carrier Frequency Offset Estimation in Weighted Fractional Fourier Transform Communication Systems

    Toshifumi KOJIMA  Kouji OHUCHI  

     
    LETTER

      Pubricized:
    2022/11/07
      Vol:
    E106-A No:5
      Page(s):
    807-811

    In this study, a blind carrier frequency offset (CFO) estimation method is proposed using the time-frequency symmetry of the transmitted signals of a weighted Fourier transform (WFrFT) communication system. Blind CFO estimation is achieved by focusing on the property that results in matching the signal waveforms before and after the Fourier transform when the WFrFT parameter is set to a certain value. Numerical simulations confirm that the proposed method is more resistant to Rayleigh fading than the conventional estimation methods.

  • A Low Complexity CFO Estimation Method for UFMC Systems

    Hui ZHANG  Bin SHENG  Pengcheng ZHU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/08/21
      Vol:
    E104-B No:2
      Page(s):
    169-177

    Universal filtered multicarrier (UFMC) systems offer a flexibility of filtering sub-bands with arbitrary bandwidth to suppress out-of-band (OoB) emission, while keeping the orthogonality between subcarriers in one sub-band. Oscillator discrepancies between the transmitter and receiver induce carrier frequency offset (CFO) in practical systems. In this paper, we propose a novel CFO estimation method for UFMC systems that has very low computational complexity and can then be used in practical systems. In order to fully exploit the coherence bandwidth of the channel, the training symbols are designed to have several identical segments in the frequency domain. As a result, the integral part of CFO can be estimated by simply determining the correlation between received signal and the training symbol. Simulation results show that the proposed method can achieve almost the same performance as an existing method and even a better performance in channels that have small decay parameter values. The proposed method can also be used in other multicarrier systems, such as orthogonal frequency division multiplexing (OFDM).

  • On Performance of Deep Learning for Harmonic Spur Cancellation in OFDM Systems

    Ziming HE  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:2
      Page(s):
    576-579

    In this letter, the performance of a state-of-the-art deep learning (DL) algorithm in [5] is analyzed and evaluated for orthogonal frequency-division multiplexing (OFDM) receivers, in the presence of harmonic spur interference. Moreover, a novel spur cancellation receiver structure and algorithm are proposed to enhance the traditional OFDM receivers, and serve as a performance benchmark for the DL algorithm. It is found that the DL algorithm outperforms the traditional algorithm and is much more robust to spur carrier frequency offset.

  • Blind Carrier Frequency Offset Estimation Based on Particle Swarm Optimization Searching for Interleaved OFDMA Uplink

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:9
      Page(s):
    1740-1744

    In this letter, standard particle swarm optimization (PSO) with the center-symmetric trimmed correlation matrix and the orthogonal projection technique is firstly presented for blind carrier frequency offset estimation under interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. It doesn't require eigenvalue decomposition and only needs a single OFDMA data block. Second, this letter also presents adaptive multiple inertia weights with Newton method to speed up the convergence of standard PSO iteration process. Meanwhile, the advantage of inherent interleaved OFDMA signal structure also is exploited to conquer the problems of local optimization and the effect of ambiguous peaks for the proposed approaches. Finally, several simulation results are provided for illustration and comparison.

  • An Interference Rejection Combining Technique for an SFBC-OFDM System with Multiple Carrier Frequency Offsets

    Mina LEE  Rothna PEC  Kyu Seok KIM  Chang Hwan PARK  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    481-487

    In this paper, an interference rejection combining (IRC) technique is proposed for SFBC-OFDM cellular systems that exhibit multiple carrier frequency offsets (CFOs). The IRC weight and the corresponding value for CFO compensation in the proposed technique are obtained by maximizing the post-SINR, i.e., minimizing both the interference signal and inter-channel interference (ICI) terms caused by multiple CFOs. The performance of the conventional IRC and proposed IRC techniques is evaluated by computer simulation for an SFBC-OFDM cellular system with multiple CFOs.

  • Time-Frequency Multiplex Estimator Design with Joint Tx IQ Imbalance, CFO, Channel Estimation, and Compensation for Multi-Carrier Systems

    Juinn-Horng DENG  Kuo-Tai FENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2322-2329

    A low-complexity time-frequency multiplex estimator and low-complexity equalizer transceiver design are proposed to combat the problems of RF impairment associated with zero-IF transceiver of multi-carrier systems. Moreover, the proposed preambles can estimate the transmitter (TX) in-phase and quadrature-phase (IQ) imbalance, carrier frequency offset (CFO), and channel impulse response parameters. The proposed system has two parts. First, all parameters of the impairments are estimated by the designed time-frequency multiplex estimator. Second, the estimated parameters are used to compensate the above problems and detect the transmitted signal with low complexity. Simulation results confirm that the proposed estimator performs reliably with respect to IQ imbalance, CFO, and multipath fading channel effects.

  • Blind Carrier Frequency Offset Estimation Based on Weighted Subspace Projection Approach for Interleaved OFDMA Uplink

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    878-880

    This letter deals with the carrier frequency offsets (CFO) estimation problem for orthogonal frequency division multiple access (OFDMA) uplink systems. Combined with centro-symmetric (CS) trimmed autocorrelation matrix and weighting subspace projection, the proposed estimator has better estimate performance than MVDR, MUSIC, CS-MUSIC, and ESPRIT estimators, especially in relatively less of OFDMA blocks and low SNR situations. Simulation results are presented to verify the efficiency of the proposed estimator.

  • Simple Joint Symbol Timing and Carrier Frequency Offset Estimation for Wireless Body Area Networks

    Byung-Kyu KIM  Young-Hwan YOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:11
      Page(s):
    2276-2278

    In this letter, we propose a simple algorithm to jointly estimate the symbol timing offset (STO) and carrier frequency offset (CFO) of wireless body area network (WBAN) signals. The preamble specified in IEEE 802.15.6 WBAN is used to achieve an accurate timing and frequency estimation based on the differential correlation. Simulations demonstrate that the proposed joint estimation scheme can be effectively employed to get accurate STO and CFO estimate with less complexity.

  • Blind Carrier Frequency Offset Estimation Based on Polynomial Rooting for Interleaved Uplink OFDMA

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2057-2060

    This letter deals with blind carrier frequency offset estimation by exploiting the minimum variance distortionless response (MVDR) criterion for interleaved uplink orthogonal frequency division multiple access (OFDMA). It has been shown that the complexity and estimation accuracy of MVDR strictly depend on the grid size used during the search. For the purpose of efficient estimation, we present an improved polynomial rooting estimator that is robust in low signal-to-noise ratio scenario. Simulation results are provided for illustrating the effectiveness of the proposed estimator.

  • Joint Channel Shortening and Carrier Frequency Offset Estimation Based on Carrier Nulling Criterion in Downlink OFDMA Systems

    Teruyuki MIYAJIMA  Ryo KUWANA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1014-1016

    In this letter, we present a joint blind adaptive scheme to suppress inter-block interference and estimate a carrier frequency offset (CFO) in downlink OFDMA systems. The proposed scheme is a combination of a channel shortening method and a CFO estimator, both based on the carrier nulling criterion. Simulation results demonstrate the effectiveness of the proposed scheme.

  • Joint Time-Frequency Diversity for Single-Carrier Block Transmission in Frequency Selective Channels

    Jinsong WU  Steven D. BLOSTEIN  Qingchun CHEN  Pei XIAO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1912-1920

    In time-varying frequency selective channels, to obtain high-rate joint time-frequency diversity, linear dispersion coded orthogonal frequency division multiplexing (LDC-OFDM), has recently been proposed. Compared with OFDM systems, single-carrier systems may retain the advantages of lower PAPR and lower sensitivity to carrier frequency offset (CFO) effects, which motivates this paper to investigate how to achieve joint frequency and time diversity for high-rate single-carrier block transmission systems. Two systems are proposed: linear dispersion coded cyclic-prefix single-carrier modulation (LDC-CP-SCM) and linear dispersion coded zero-padded single-carrier modulation (LDC-ZP-SCM) across either multiple CP-SCM or ZP-SCM blocks, respectively. LDC-SCM may use a layered two-stage LDC decoding with lower complexity. This paper analyzes the diversity properties of LDC-CP-SCM, and provides a sufficient condition for LDC-CP-SCM to maximize all available joint frequency and time diversity gain and coding gain. This paper shows that LDC-ZP-SCM may be effectively equipped with low-complexity minimum mean-squared error (MMSE) equalizers. A lower complexity scheme, linear transformation coded SCM (LTC-SCM), is also proposed with good diversity performance.

  • Finite High Order Approximation Algorithm for Joint Frequency Tracking and Channel Estimation in OFDM Systems

    Rainfield Y. YEN  Hong-Yu LIU  Chia-Sheng TSAI  

     
    PAPER-OFDM

      Vol:
    E95-A No:10
      Page(s):
    1676-1682

    For maximum-likelihood (ML) estimation to jointly track carrier frequency offset (CFO) and channel impulse response (CIR) in orthogonal frequency division multiplexing (OFDM) systems, we present a finite high order approximation method utilizing the MATLAB ‘roots' command on the log-likelihood function derived from the OFDM received signal, coupled with an adaptive iteration algorithm. The tracking performance of this high order approximation algorithm is found to be excellent, and as expected, the algorithm outperforms the other existing first order approximation algorithms.

  • Robust Generalized-Sidelobe-Cancellation-Based Receivers for MC-CDMA Uplink against Carrier Frequency Offsets

    Tsui-Tsai LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:9
      Page(s):
    3011-3014

    This letter presents a robust receiver using the generalized sidelobe canceller aided with the high-order derivative constraint technique for multicarrier code-division multiple-access (MC-CDMA) uplink against carrier frequency offset (CFO). Numerical results demonstrate the efficacy of the proposed receiver.

  • Exact Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with Carrier Frequency Offset

    Jaeyoon LEE  Dongweon YOON  Hoon YOO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1439-1442

    In an orthogonal frequency division multiplexing (OFDM) system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide a closed-form expression to evaluate the exact error probabilities of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.

  • A Frequency Offset Estimation and Compensation Scheme for MB-OFDM UWB Modem

    Do-Hoon KIM  Kyu-Min KANG  Chungyong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    1015-1018

    We present a carrier and sampling frequency offset estimation and compensation scheme for a multi-band orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) modem. We first perform initial carrier frequency offset (CFO) estimation and compensation during the preamble period, and then conduct the estimation and compensation of the residual CFO and sampling frequency offset (SFO) during the payload period. The proposed design scheme reduces the logic gate count of the frequency offset compensation block by about 10%, while it gives almost the same performance at the packet error rate (PER) of 10-4 in the CM1 channel. The frequency offset estimation and compensation block is implemented using 90 nm CMOS technology and tested.

  • Linear Receiver for OFDMA Uplink with both CFOs and IQ Imbalances

    Weile ZHANG  Qinye YIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    639-642

    In orthogonal frequency division multiple access (OFD-MA) uplink, the distortions introduced by both multiple carrier frequency offsets (CFOs) and in-phase and quadrature-phase (IQ) imbalances will severely degrade the system performance. With both CFOs and IQ imbalances, signal detection at the receiver becomes hard, if not impossible. In this letter, a linear receiver is proposed to cope with the distortions at a slight drop in system transmission rate. The analysis and simulations demonstrate the effectiveness of the proposed approach.

  • Low Complexity Compensation of Frequency Dependent I/Q Imbalance and Carrier Frequency Offset for Direct Conversion Receivers

    Leonardo LANANTE, Jr.  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    484-492

    Conventional algorithms for the joint estimation of carrier frequency offset (CFO) and I/Q imbalance no longer work when the I/Q imbalance depends on the frequency. In order to correct the imbalance across many frequencies, the compensator needed is a filter as opposed to a simple gain and phase compensator. Although, algorithms for estimating the optimal coefficients of this filter exist, their complexity is too high for hardware implementation. In this paper we present a new low complexity algorithm for joint estimation of CFO and frequency dependent I/Q imbalance. For the first part, we derive the estimation scheme using the linear least squares algorithm and examine its floating point performance compared to conventional algorithms. We show that the proposed algorithm can completely eliminate BER floor caused by CFO and I/Q imbalance at a lesser complexity compared to conventional algorithms. For the second part, we examine the hardware complexity in fixed point hardware and latency of the proposed algorithm. Based on BER performance, the circuit needs a wordlength of at least 16 bits in order to properly estimate CFO and I/Q imbalance. In this configuration, the circuit is able to achieve a maximum speed of 115.9 MHz in a Virtex 5 FPGA.

1-20hit(56hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.