1-3hit |
Dongxu CHENG Jianwei LIU Zhenyu GUAN Tao SHANG
Established in self-organized mode between mobile terminals (MT), mobile Ad Hoc networks are characterized by a fast change of network topology, limited power dissipation of network node, limited network bandwidth and poor security of the network. Therefore, this paper proposes an efficient one round certificateless authenticated group key agreement (OR-CLAGKA) protocol to satisfy the security demand of mobile Ad Hoc networks. Based on elliptic curve public key cryptography (ECC), OR-CLAGKA protocol utilizes the assumption of elliptic curve discrete logarithm problems (ECDLP) to guarantee its security. In contrast with those certificateless authenticated group key agreement (GKA) protocols, OR-CLAGKA protocol can reduce protocol data interaction between group users and it is based on efficient ECC public key infrastructure without calculating bilinear pairings, which involves negligible computational overhead. Thus, it is particularly suitable to deploy OR-CLAGKA protocol on MT devices because of its limited computation capacity and power consumption. Also, under the premise of keeping the forward and backward security, OR-CLAGKA protocol has achieved appropriate optimization to improve the performance of Ad Hoc networks in terms of frequent communication interrupt and reconnection. In addition, it has reduced executive overheads of key agreement protocol to make the protocol more suitable for mobile Ad Hoc network applications.
An aggregate signature scheme,which is an extension of ordinary signature, allows anyone to compress n signatures of n messages from n signers into a single short signature for reducing the size multiple individual signatures. Recently, Liu et al. proposed an efficient certificateless aggregate signature scheme with shorter public key size, constant AS size and with constant pairing computations. Although they proved that the scheme has existential unforgeability against adaptive chosen messages attacks. However, in this paper, two concrete attacks are proposed to show that Liu et al.'s scheme actually does not reach the security as they claimed.
He LIU Mangui LIANG Haoliang SUN
In this letter, we propose a new secure and efficient certificateless aggregate signature scheme which has the advantages of both certificateless public key cryptosystem and aggregate signature. Based on the computational Diffie-Hellman problem, our scheme can be proven existentially unforgeable against adaptive chosen-message attacks. Most importantly, our scheme requires short group elements for aggregate signature and constant pairing computations for aggregate verification, which leads to high efficiency due to no relations with the number of signers.