1-2hit |
Dexiu HU Zhen HUANG Jianhua LU
This paper proposes and analyses an improved direction finding (DF) method that uses a rotating interferometer. The minimum sampling frequency is deduced in order to eliminate the phase ambiguity associated with a long baseline, the influence of phase imbalance of receiver is quantitatively discussed and the Root Mean Square Error (RMSE) of both bearing angle and pitch angle are also demonstrated. The theoretical analysis of the rotating interferometer is verified by simulation results, which show that it achieves better RMSE performance than the conventional method.
We analytically evaluated the effects of the analog components on a high-speed downlink packet access (HSDPA) system standardized by 3GPP. We considered the phase noise of synthesizers, the imbalance of demodulators between in-phase and quadrature channels, and the filters. The components are represented by the appropriate equations. We applied adaptive modulation and coding methods for HSDPA systems and base station transmission of adequate data rate signals complying with quality estimated by mobile stations (MSs). The quality represents a data rate indicating that MSs can receive the signals. We estimated the quality using a conventional signal-to-interference measurement of the common pilot channel (CPICH) and found that the phase noise creates a mismatch relationship between the quality and the data rate, while the demodulator imbalance and filters create a suitable relationship. We confirmed this using analytic methods and computer simulation.