1-4hit |
In this paper, a feasible optical code-division multiple-access (CDMA) technique is proposed for high-speed computer networks using prime codes and optical signal processing to guarantee real-time data communications. All-optical architectures for fastly tunable CDMA encoders and decoders are presented, which can be feasibly implemented in the optical domain by using electrooptic switches and optical delay lines. This can support an ultrahigh throughput and a very fast reconfiguration time. Furthermore, we present a self-synchronized sample technique to ensure the correct phase synchronization between optical clock stream and asynchronous electronic data at each electrooptic modulator of an optical CDMA transmitter.
Seung Eok HONG Soon Young YOON Hwang Soo LEE Jaemin AHN
This paper presents a performance analysis of the standard non-coherent delay-locked loop in asynchronous direct-sequence code division multiple access (DS-CDMA) environments. In particular, the effects of multiple access interference on the loop performance are addressed. We work out an expression for the steady-state tracking-error variance and provide performance curves in terms of mean time to lose lock as a function of the number of interfering users and Eb/No.
A system for measuring the low frequency amplitude and phase noises was set-up, with employing a phase sensitive detector and phase-shifter. It is noted that both noises were partly correlated. The phase noise was explained by the transit time fluctuation due to the fluctuating diffusion coefficient. The amplitude noise reduction was demonstrated by applying the inverted output of the phase noise to the amplitude noise.
Junichi YOSHIDA Satoshi SEKINE Hiroshi TERUI Toshimi KOMINATO Kaoru YOSHINO Nobuyori TSUZUKI Morio KOBAYASHI Kenji OKADA
A hybrid integrated optical module composed of a silica-based planar lightwave circuit (PLC), a laser diode with an integrated monitor-photodiode, and a pin-photodiode is fabricated for use in high-performance, compact and cost-effective fiber optic subscriber systems. Its applicability to a wavelength-division-multiplex (WDM) system with a 1.3-µm bi-directional signal and a 1.5-µm one-way signal is demonstrated. The PLC was fabricated by a combination of flame hydrolysis deposition (FHD) and reactive ion etching (RIE), and it simultaneously achieved 1.3-µm/1.5-µm multi/demultiplexing and 1.3-µm Y-branching functions. The optical module exhibited insertion losses of 4.1dB at 1.31µm (including a Y-branch circuit loss of 3dB) and 0.5dB at 1.53µm. An optical output power of more than -4dBm was obtained from the optical module and the crosstalk was sufficiently low at less than -20dB between wavelengths of 1.3µm and 1.5µm. Temperature cycle tests on the optical module showed reliable and stable operation with an optical power fluctuation of less than 0.3dB for 500 cycles.