1-4hit |
Masayuki ODAGAWA Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.
Masayuki ODAGAWA Takumi OKAMOTO Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.
Masayuki ODAGAWA Takumi OKAMOTO Tetsushi KOIDE Toru TAMAKI Bisser RAYTCHEV Kazufumi KANEDA Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA Takayuki SUGAWARA Hiroshi TOISHI Masayuki TSUJI Nobuo TAMBA
In this paper, we present a hardware implementation of a colorectal cancer diagnosis support system using a colorectal endoscopic video image on customizable embedded DSP. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a computer-aided diagnosis (CAD) system for colorectal endoscopic images with Narrow Band Imaging (NBI) magnification with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification. Since CNN and SVM need to perform many multiplication and accumulation (MAC) operations, we implement the proposed hardware system on a customizable embedded DSP, which can realize at high speed MAC operations and parallel processing with Very Long Instruction Word (VLIW). Before implementing to the customizable embedded DSP, we profile and analyze processing cycles of the CAD system and optimize the bottlenecks. We show the effectiveness of the real-time diagnosis support system on the embedded system for endoscopic video images. The prototyped system demonstrated real-time processing on video frame rate (over 30fps @ 200MHz) and more than 90% accuracy.
The diagnosis system of Maglev Train is one of most important parts, which can obtain kinds of status messages of electric and electronic devices in vehicle to ensure the whole train safety. In this paper, diagnosis system structure and diagnosis method are analyzed and discussed in detail. The disadvantages of diagnosis system are described. In virtue of the theory of ADS, some basic ideas of ADS are applied in new diagnosis system. The structure, component parts and diagnosis method of new diagnosis system are proposed, designed and discussed in detail. The analysis results show that new diagnosis not only embodies some ADS' ideas but also better meets the demands of Maglev Train Diagnosis System.