Keyword Search Result

[Keyword] digital hearing aid(6hit)

1-6hit
  • A Comprehensive Method to Improve Loudness Compensation and High-Frequency Speech Intelligibility for Digital Hearing Aids

    Zhaoyang GUO  Bo WANG  Xin'an WANG  

     
    LETTER-Speech and Hearing

      Vol:
    E100-A No:7
      Page(s):
    1552-1556

    A comprehensive method applying a nonlinear frequency compression (FC) as complementary to multi-band loudness compensation is proposed, which is able to improve loudness compensation and simultaneously increase high-frequency speech intelligibility for digital hearing aids. The proposed nonlinear FC (NLFC) improves the conventional methods in the aspect that the compression ratio (CR) is adjusted based on the speech intelligibility percentage in different frequency ranges. Then, an adaptive wide dynamic range compression (AWDRC) with a time-varying CR is applied to achieve adaptive loudness compensation. The experimental test results show that the mean speech identification is improved in comparison with the state-of-art methods.

  • An Improved Perceptual MBSS Noise Reduction with an SNR-Based VAD for a Fully Operational Digital Hearing Aid

    Zhaoyang GUO  Xin'an WANG  Bo WANG  Shanshan YONG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/02/17
      Vol:
    E100-D No:5
      Page(s):
    1087-1096

    This paper first reviews the state-of-the-art noise reduction methods and points out their vulnerability in noise reduction performance and speech quality, especially under the low signal-noise ratios (SNR) environments. Then this paper presents an improved perceptual multiband spectral subtraction (MBSS) noise reduction algorithm (NRA) and a novel robust voice activity detection (VAD) based on the amended sub-band SNR. The proposed SNR-based VAD can considerably increase the accuracy of discrimination between noise and speech frame. The simulation results show that the proposed NRA has better segmental SNR (segSNR) and perceptual evaluation of speech quality (PESQ) performance than other noise reduction algorithms especially under low SNR environments. In addition, a fully operational digital hearing aid chip is designed and fabricated in the 0.13 µm CMOS process based on the proposed NRA. The final chip implementation shows that the whole chip dissipates 1.3 mA at the 1.2 V operation. The acoustic test result shows that the maximum output sound pressure level (OSPL) is 114.6 dB SPL, the equivalent input noise is 5.9 dB SPL, and the total harmonic distortion is 2.5%. So the proposed digital hearing aid chip is a promising candidate for high performance hearing-aid systems.

  • Sub-Band Noise Reduction in Multi-Channel Digital Hearing Aid

    Qingyun WANG  Ruiyu LIANG  Li JING  Cairong ZOU  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/10/14
      Vol:
    E99-D No:1
      Page(s):
    292-295

    Since digital hearing aids are sensitive to time delay and power consumption, the computational complexity of noise reduction must be reduced as much as possible. Therefore, some complicated algorithms based on the analysis of the time-frequency domain are very difficult to implement in digital hearing aids. This paper presents a new approach that yields an improved noise reduction algorithm with greatly reduce computational complexity for multi-channel digital hearing aids. First, the sub-band sound pressure level (SPL) is calculated in real time. Then, based on the calculated sub-band SPL, the noise in the sub-band is estimated and the possibility of speech is computed. Finally, a posteriori and a priori signal-to-noise ratios are estimated and the gain function is acquired to reduce the noise adaptively. By replacing the FFT and IFFT transforms by the known SPL, the proposed algorithm greatly reduces the computation loads. Experiments on a prototype digital hearing aid show that the time delay is decreased to nearly half that of the traditional adaptive Wiener filtering and spectral subtraction algorithms, but the SNR improvement and PESQ score are rather satisfied. Compared with modulation frequency-based noise reduction algorithm, which is used in many commercial digital hearing aids, the proposed algorithm achieves not only more than 5dB SNR improvement but also less time delay and power consumption.

  • Modified Pseudo Affine Projection Algorithm for Feedback Cancellation in Hearing Aids

    Keunsang LEE  Younghyun BAEK  Dongwook KIM  Junil SOHN  Youngcheol PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:12
      Page(s):
    2645-2648

    This paper presents an adaptive feedback canceller (AFC) based on a pseudo affine projection (PAP) algorithm that can provide fast and stable adaptation to the time-varying environment. The proposed algorithm utilizes the adaptive linear prediction (LP) to obtain the LP coefficients of input signal model and the inverse gain filter (IGF) to alleviate the effect of compensation gain. As a result, when the input is model as an AR signal, the proposed algorithm satisfies the condition for having an almost unbiased estimatie of the feedback path and then its performance is relatively independent of the gain setting of hearing aids. Simulation results showed that the proposed algorithm is capable of obtaining unbaised feedback path estimates and high speech quality.

  • Compressed Sampling and Source Localization of Miniature Microphone Array

    Qingyun WANG  Xinchun JI  Ruiyu LIANG  Li ZHAO  

     
    LETTER

      Vol:
    E97-A No:9
      Page(s):
    1902-1906

    In the traditional microphone array signal processing, the performance degrades rapidly when the array aperture decreases, which has been a barrier restricting its implementation in the small-scale acoustic system such as digital hearing aids. In this work a new compressed sampling method of miniature microphone array is proposed, which compresses information in the internal of ADC by means of mixture system of hardware circuit and software program in order to remove the redundancy of the different array element signals. The architecture of the method is developed using the Verilog language and has already been tested in the FPGA chip. Experiments of compressed sampling and reconstruction show the successful sparseness and reconstruction for speech sources. Owing to having avoided singularity problem of the correlation matrix of the miniature microphone array, when used in the direction of arrival (DOA) estimation in digital hearing aids, the proposed method has the advantage of higher resolution compared with the traditional GCC and MUSIC algorithms.

  • An Efficient Speech Enhancement Algorithm for Digital Hearing Aids Based on Modified Spectral Subtraction and Companding

    Young Woo LEE  Sang Min LEE  Yoon Sang JI  Jong Shill LEE  Young Joon CHEE  Sung Hwa HONG  Sun I. KIM  In Young KIM  

     
    PAPER-Speech and Hearing

      Vol:
    E90-A No:8
      Page(s):
    1628-1635

    Digital hearing aid users often complain of difficulty in understanding speech in the presence of background noise. To improve speech perception in a noisy environment, various speech enhancement algorithms have been applied in digital hearing aids. In this study, a speech enhancement algorithm using modified spectral subtraction and companding is proposed for digital hearing aids. We adjusted the biases of the estimated noise spectrum, based on a subtraction factor, to decrease the residual noise. Companding was applied to the channel of the formant frequency based on the speech presence indicator to enhance the formant. Noise suppression was achieved while retaining weak speech components and avoiding the residual noise phenomena. Objective and subjective evaluation under various environmental conditions confirmed the improvement due to the proposed algorithm. We tested segmental SNR and Log Likelihood Ratio (LLR), which have higher correlation with subjective measures. Segmental SNR has the highest and LLR the lowest correlation of the methods tested. In addition, we confirmed by spectrogram that the proposed method significantly reduced the residual noise and enhanced the formants. A mean opinion score that represented the global perception score was tested; this produced the highest quality speech using the proposed method. The results show that the proposed speech enhancement algorithm is beneficial for hearing aid users in noisy environments.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.