1-4hit |
Can CHEN Chao ZHOU Jian LIU Dengyin ZHANG
Distributed compressive video sensing (DCVS) has received considerable attention due to its potential in source-limited communication, e.g., wireless video sensor networks (WVSNs). Multi-hypothesis (MH) prediction, which treats the target block as a linear combination of hypotheses, is a state-of-the-art technique in DCVS. The common approach is under the supposition that blocks that are dissimilar from the target block are given lower weights than blocks that are more similar. This assumption can yield acceptable reconstruction quality, but it is not suitable for scenarios with more details. In this paper, based on the joint sparsity model (JSM), the authors present a Tikhonov-regularized MH prediction scheme in which the most similar block provides the similar common portion and the others blocks provide respective unique portions, differing from the common supposition. Specifically, a new scheme for generating hypotheses and a Euclidean distance-based metric for the regularized term are proposed. Compared with several state-of-the-art algorithms, the authors show the effectiveness of the proposed scheme when there are a limited number of hypotheses.
Can CHEN Dengyin ZHANG Jian LIU
Multi-hypothesis prediction technique, which exploits inter-frame correlation efficiently, is widely used in block-based distributed compressive video sensing. To solve the problem of inaccurate prediction in multi-hypothesis prediction technique at a low sampling rate and enhance the reconstruction quality of non-key frames, we present a resample-based hybrid multi-hypothesis scheme for block-based distributed compressive video sensing. The innovations in this paper include: (1) multi-hypothesis reconstruction based on measurements reorganization (MR-MH) which integrates side information into the original measurements; (2) hybrid multi-hypothesis (H-MH) reconstruction which mixes multiple multi-hypothesis reconstructions adaptively by resampling each reconstruction. Experimental results show that the proposed scheme outperforms the state-of-the-art technique at the same low sampling rate.
Jin XU Yan ZHANG Zhizhong FU Ning ZHOU
Distributed compressive video sensing (DCVS) is a new paradigm for low-complexity video compression. To achieve the highest possible perceptual coding performance under the measurements budget constraint, we propose a perceptual optimized DCVS codec by jointly exploiting the reweighted sampling and rate-distortion optimized measurements allocation technologies. A visual saliency modulated just-noticeable distortion (VS-JND) profile is first developed based on the side information (SI) at the decoder side. Then the estimated correlation noise (CN) between each non-key frame and its SI is suppressed by the VS-JND. Subsequently, the suppressed CN is utilized to determine the weighting matrix for the reweighted sampling as well as to design a perceptual rate-distortion optimization model to calculate the optimal measurements allocation for each non-key frame. Experimental results indicate that the proposed DCVS codec outperforms the other existing DCVS codecs in term of both the objective and subjective performance.
Distributed compressive video sensing (DCVS) is an emerging low-complexity video coding framework which integrates the merits of distributed video coding (DVC) and compressive sensing (CS). In this paper, we propose a novel rate-distortion optimized DCVS codec, which takes advantage of a rate-distortion optimization (RDO) model based on the estimated correlation noise (CN) between a non-key frame and its side information (SI) to determine the optimal measurements allocation for the non-key frame. Because the actual CN can be more accurately recovered by our DCVS codec, it leads to more faithful reconstruction of the non-key frames by adding the recovered CN to the SI. The experimental results reveal that our DCVS codec significantly outperforms the legacy DCVS codecs in terms of both objective and subjective performance.