1-15hit |
This paper considers error-correction for information in array design, i.e., two-dimensional design such as QR-codes. The error model is multi deletion/substitution/erasure errors. Code construction for the errors and an application of the code are provided. The decoding technique uses an error-locator for deletion codes.
Hideharu KOJIMA Tatsuhiro TSUCHIYA Yasumasa FUJISAKI
This paper discusses the collection of sensor data for power distribution systems. In current power distribution systems, this is usually performed solely by the Remote Terminal Unit (RTU) which is located at the root of a power distribution network. The recent rise of distributed power sources, such as photovoltaic generators, raises the demand to increase the frequency of data collection because the output of these distributed generators varies quickly depending on the weather. Increasing data collection frequency in turn requires shortening the time required for data collection. The paper proposes the use of aggregation points for this purpose. An aggregation point can collect sensor data concurrently with other aggregation points as well as with the RTU. The data collection time can be shortened by having the RTU receive data from aggregation points, instead of from all sensors. This approach then poses the problem of finding the optimal location of aggregation points. To solve this problem, the paper proposes a Mixed Integer Linear Problem (MILP) formulation of the problem. The MILP problem can then be solved with off-the-shelf mathematical optimization software. The results of experiments show that the proposed approach is applicable to rather large scale power distribution systems.
An (≤n,≤ω)-one-time secure broadcast encryption scheme (BES) allows a sender to choose any subset of receivers so that only the designated users can decrypt a ciphertext. In this paper, we first show an efficient construction of an (≤n,≤ω)-one-time secure BES with general ciphertext sizes. Specifically, we propose a generic construction of an (≤n,≤ω)-one-time secure BES from key predistribution systems (KPSs) when its ciphertext size is equal to integer multiple of the plaintext size, and our construction includes all known constructions. However, there are many possible combinations of the KPSs to realize the BES in our construction methodology, and therefore, we show that which combination is the best one in the sense that secret-key size can be minimized. Our (optimized) construction provides a flexible parameter setup (i.e. we can adjust the secret-key sizes) by setting arbitrary ciphertext sizes based on restrictions on channels such as channel capacity and channel bandwidth.
Masafumi KINOSHITA Osamu TAKADA Izumi MIZUTANI Takafumi KOIKE Kenji LEIBNITZ Masayuki MURATA
In the big data era, messaging systems are required to process large volumes of message traffic with high scalability and availability. However, conventional systems have two issues regarding availability. The first issue is that failover processing itself has a risk of failure. The second issue is to find a trade-off between consistency and availability. We propose a resilient messaging system based on a distributed in-memory key-value store (KVS). Its servers are interconnected with each other and messages are distributed to multiple servers in normal processing state. This architecture can continue messaging services wherever in the messaging system server/process failures occur without using failover processing. Furthermore, we propose two methods for improved resilience: the round-robin method with a slowdown KVS exclusion and the two logical KVS counter-rotating rings to provide short-term-availability in the messaging system. Evaluation results demonstrate that the proposed system can continue service without failover processing. Compared with the conventional method, our proposed distribution method reduced 92% of error responses to clients caused by server failures.
Seiya ABE Sihun YANG Masahito SHOYAMA Tamotsu NINOMIYA Akira MATSUMOTO Akiyoshi FUKUI
400 V DC power distribution systems for data centers require a fast response DC circuit breaker is required. The semiconductor DC circuit breaker is an important key technology in DC power distribution systems. This paper considers the malfunction of Silicon Carbide- Static Induction Transistor (SiC-SIT) based DC circuit breakers in 400 V DC power distribution systems for data centers. The malfunction mechanism is explained, and a solution is proposed. Investigations are achieved by MATLAB/Simulink and experimental verification.
Natsume MATSUZAKI Toshihisa NAKANO Tsutomu MATSUMOTO
This paper proposes a flexible tree-based key management framework for a terminal to connect with multiple content distribution systems (called as CDSs in this paper). In an existing tree-based key management scheme, a terminal keeps previously distributed node keys which are used for decrypting contents from a CDS. According to our proposal, the terminal can calculate its node keys of a selected CDS as the need arises, using the "public bulletin board" of the CDS. The public bulletin board is generated by a management center of the individual CDS, depending on a tree structure which it determines in its convenience. After the terminal calculates its node keys, it can get a content of the CDS using the calculated node keys.
Solutions based on error-correcting codes for the blacklisting problem of a broadcast distribution system have been proposed by Kumar, Rajagopalan and Sahai. In this paper, detailed analysis of the solutions is presented. By choosing parameters properly in their constructions, we show that the performance is improved significantly.
Tsuyoshi NISHIOKA Goichiro HANAOKA Hideki IMAI
ID-based key sharing scheme is one of the important topics in Key management, and the Key Predistiribution System (KPS) is one of the major divisions of such key sharing schemes. In KPS, in order to share a common key between the participants, one of the participants need to simply feed-in his partner's identifier value into their secret-algorithm. In contrast to its such remarkable property and its high contribution to the field of key management for digital signature, it has downsides as well. In this paper, we propose an efficient signature scheme on the KPS infrastructure that can overcome such difficulties that are faced. It is shown that if an ID-based key sharing system belonging to KPS is provided, the new digital signature scheme can be used straightforwardly. Moreover, this signature scheme is proven to be secure if the discrete logarithm is reasonably complex. There already exists other digital signature scheme which are also based on KPS, but they contain inevitable flaws: its verifier is restricted and a tamper resistant module(TRM) is required. Our method resolved these problems. In our signature scheme, it is an ensured fact that, all signatures are authenticated by any entity, which is based on the inherence behavior of key generator and not of some common key. Moreover, TRM is not required in our scheme. In order to describe our new scheme, a new concept of "one-way homomorphism" is introduced.
Goichiro HANAOKA Tsuyoshi NISHIOKA Yuliang ZHENG Hideki IMAI
Efficient ID-based key sharing schemes are desired worldwide in order to obtain secure communications on the Internet and other related networks, and Key Pre-distribution System (KPS) is one of the majority of such key sharing schemes. The remarkable property of KPS, is that, user need only input the partner's identifier to the secret KPS-algorithm in order to share a key between them. Although this is just a small part of many advantages KPS has in terms of efficiency, an enormous amount of memory is always required to achieve perfect security. While the conventional KPS methods can establish communication links between any pair of entities in a communication system, in most of the practical communication environment, such as in a broadcast system, not all links will be required. In this article, we achieved a desirable method to remove the unnecessary communication links between any pair of entities in a communication system. In our scheme, required memory size per entity was just proportional to the number of entities of the partner's, while that in conventional KPS, it is proportional to the number of entities of the whole communication system. As an example, if an entity communicates with only 1/r others, the memory requirement is reduced to 1/r of the conventional KPS's. Furthermore, it was proven that the obtained memory size was optimum. Overall, our scheme confirmed greater efficiency to achieve secure communication particularly suited in large-scale networks.
A broadcast distribution system (BDS) is a system for the distribution of digital contents over broadcast channel where the data supplier broadcasts the contents in encrypted form and gives each subscriber a decoder containing a secret decryption key. A traitor is a subscriber who offers the information which allows to decrypt the broadcast. When a pirate decoder is captured, if at least one traitor can be identified from it, a BDS is said to be traitor-tracing. If the data supplier can prevent subscribers from obtaining the contents without recalling their decoders, a BDS is said to be subscriber-excluding. In this paper, we propose an efficient BDS which is both subscriber-excluding and traitor-tracing. We use similar mathematics to a threshold cryptosystem. In the proposed BDS, the maximum number of excluded subscribers reaches the maximum number of traitors in a coalition for which at least one traitor can be identified. We prove that the proposed BDS is secure against ciphertext-only attack if and only if ElGamal cryptosystem is secure against the attack and the discrete logarithm problem is hard. The proposed BDS is the first one which satisfies all the following features: Both subscriber-excluding and traitor-tracing, identifying all the traitors, black box tracing and public key system.
Goichiro HANAOKA Tsuyoshi NISHIOKA Yuliang ZHENG Hideki IMAI
Credit-based electronic payment systems are considered to play important roles in future automated payment systems. Like most other types of payment systems, however, credit-based systems proposed so far generally involve computationally expensive cryptographic operations. Such a relatively heavy computational load is preventing credit-based systems from being used in applications which require very fast processing. A typical example is admission-fee payment at the toll gate of an expressway without stopping a vehicle that travels at a high speed. In this article, we propose a very fast credit-based electronic payment protocol for admission-fee payment. More specifically, we propose a payment system between a high-speed vehicle and a toll gate which uses only very simple and fast computations. The proposed system makes use of an optimized Key Pre-distribution System (or KPS) to obtain high resistance against collusion attacks.
Hisao SAKAZAKI Eiji OKAMOTO Masahiro MAMBO
A key distribution system is a system in which users securely generate a common key. One kind of identity-based key distribution system was proposed by E. Okamoto. Its security depends on the difficulty of factoring a composite number of two large primes like RSA public-key cryptosystem. Another kind of identity-based key distribution system was proposed by K. Nyberg, R. A. Rueppel. Its security depends on the difficulty of the discrete logarithm problem. On the other hand, Koblitz and Miller described how a group of points on an elliptic curve over a finite field can be used to construct a public key cryptosystem. In 1997, we proposed an ID-based key distribution system over an elliptic curve, as well as those over the ring Z/nZ. Its security depends on the difficulty of factoring a composite number of two large primes. We showed that this system over an elliptic curve is more suitable for the implementation than those over the ring Z/nZ. In this paper, we apply the Nyberg-Rueppel ID-based key distribution system to an elliptic curve. It provides relatively small block size and high security. This public key distribution system can be efficiently implemented. However the Nyberg-Rueppel's scheme requires relatively large data transmission. As a solution to this problem, we improve the scheme. This improved scheme is very efficient since data transferred for the common key generation is reduced to half of those in the Nyberg-Rueppel's scheme.
Ching-Te WANG Chin-Chen CHANG Chu-Hsing LIN
In this paper, we propose a new conference key distribution scheme and the supervision of a conference when users are in a level-based hierarchy. In a conference key distribution system, one message is transmitted to the participants from a chairman, a legitimate member can decrypt it and reveal the common session key. The proposed scheme can be implemented without using any tamper-proof hardware. For users in a level-based hierarchy, by applying the key distribution scheme, the higher priority users can derive the conference key and supervise the lower level users' communications. Further, the users in the same level who are not members of the conference or in lower levels can not expose the conference key. To break the common session key, a malicious user has to suffer from the difficulty of factorization and discrete logarithm problems.
Based on distributed artificial intelligence technology, the paper proposes a distributed expert system for distribution system planning. The developed expert system is made up of a set of problem-solving agents that autonomously process local tasks and cooperatively interoperate with each other by a shared database in order to reach a proper distribution plan. In addition, a two-level control mechanism composed of local-control and meta-control is also proposed to achieve a high degree of goodness in distribution system planning. To demonstrate its effect, the distributed expert system is implemented on basis of NASA's CLIPS and SUN's RPC and applied to the planning of distribution system in Taiwan. Test results indicate that the distributed expert system assists system planners in making an appropriate plan.
Tomoyuki ASANO Tsutomu MATSUMOTO Hideki IMAI
This paper presents two methods for securely realizing caller-authenticated and callee-specified calls over telecommunication networks with terminals that accept IC cards having KPS-based cryptographic functions. In the proposed protocols, users can verify that the partner is the proper owner of a certain ID or a certain pen name. Users' privacy is protected even if they do the caller-authenticated and callee-specified calls and do not pay their telephone charge in advance.