1-7hit |
Daisuke KURITA Kiichi TATEISHI Daisuke KITAYAMA Atsushi HARADA Yoshihisa KISHIYAMA Hideshi MURAI Shoji ITOH Arne SIMONSSON Peter ÖKVIST
This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.
Daisuke KITAYAMA Kiichi TATEISHI Daisuke KURITA Atsushi HARADA Minoru INOMATA Tetsuro IMAI Yoshihisa KISHIYAMA Hideshi MURAI Shoji ITOH Arne SIMONSSON Peter ÖKVIST
This paper describes the results of outdoor mobility measurements and high-speed vehicle tests that clarify the 4-by-8 multiple-input multiple-output (MIMO) throughput performance when applying distributed MIMO with narrow antenna-beam tracking in a 28-GHz frequency band in the downlink of a 5G cellular radio access system. To clarify suitable transmission point (TP) deployment for mobile stations (MS) moving at high speed, we examine two arrangements for 3TPs. The first sets all TPs in a line along the same side of the path traversed by the MS, and the other sets one TP on the other side of the path. The experiments in which the MS is installed on a moving wagon reveal that the latter deployment case enables a high peak data rate and high average throughput performance exhibiting the peak throughput of 15Gbps at the vehicle speed of 3km/h. Setting the MS in a vehicle travelling at 30km/h yielded the peak throughput of 13Gbps. The peak throughput of 11Gbps is achieved at the vehicle speed of 100km/h, and beam tracking and intra-baseband unit hand over operation are successfully demonstrated even at this high vehicle speed.
Daisuke KURITA Kiichi TATEISHI Atsushi HARADA Yoshihisa KISHIYAMA Takehiro NAKAMURA Stefan PARKVALL Erik DAHLMAN Johan FURUSKOG
This paper presents outdoor field experimental results to clarify the 4-by-4 multiple-input multiple-output (MIMO) throughput performance when applying joint transmission (JT) and distributed MIMO to the 15-GHz frequency band in the downlink of a 5G cellular radio access system. Experimental results for JT in a 100m × 70m large-cell scenario show that throughput improvement of up to 10% is achieved in most of the area and the peak data rate is improved from 2.8Gbps to 3.7Gbps. Based on analysis of the reference signal received power (RSRP) and channel correlation, we find that the RSRP is improved in lower RSRP areas, and that the channel correlation is improved in higher RSRP areas. These improvements contribute to higher throughput performance. The advantage of distributed MIMO and JT are compared in a 20m × 20m small-cell scenario. The throughput improvement of 70% and throughput exceeding 5 Gbps were achieved when applying distributed MIMO due to the improvement in the channel correlation. When applying JT, the RSRP is improved; however the channel correlation is not. As a result, there is no improvement in the throughput performance in the area. Finally, the relationship between the transmission point (TP) allocation and the direction of user equipment (UE) antenna arrangement is investigated. Two TP positions at 90 and 180deg. from each other are shown to be advantageous in terms of the throughput performance with different direction of UE antenna arrangement. Thus, we conclude that JT and distributed MIMO are promising technologies for the 5G radio access system that can compensate for the propagation loss and channel correlation in high frequency bands.
Ilmiawan SHUBHI Yuji HAYASHI Hidekazu MURATA
In multi user multiple input multiple output systems, spatial precoding is typically employed as an interference cancellation technique. This technique, however, requires accurate channel state information at the transmitter and limits the mobility of the mobile station (MS). Instead of spatial precoding, this letter implements collaborative interference cancellation (CIC) for interference suppression. In CIC, neighboring MSs share their received signals without decoding and equivalently increase the number of received antennas. The performance is evaluated through a field experiment using a vehicle that is equipped with seven MSs and moves around an urban area.
Hajime TAZAKI Rodney Van METER Ryuji WAKIKAWA Thirapon WONGSAARDSAKUL Kanchana KANCHANASUT Marcelo DIAS DE AMORIM Jun MURAI
Motivated by the deployment of post-disaster MANEMO (MANET for NEMO) composed of mobile routers and stations, we evaluate two candidate routing protocols through network simulation, theoretical performance analysis, and field experiments. The first protocol is the widely adopted Optimized Link State Routing protocol (OLSR) and the second is the combination of the Tree Discovery Protocol (TDP) with Network In Node Advertisement (NINA). To the best of our knowledge, this is the first time that these two protocols are compared in both theoretical and practical terms. We focus on the control overhead generated when mobile routers perform a handover. Our results confirm the correctness and operational robustness of both protocols. More interestingly, although in the general case OLSR leads to better results, TDP/NINA outperforms OLSR both in the case of sparse networks and in highly mobile networks, which correspond to the operation point of a large set of post-disaster scenarios.
Yoshihisa KISHIYAMA Noriyuki MAEDA Kenichi HIGUCHI Hiroyuki ATARASHI Mamoru SAWAHASHI
This paper presents throughput performance along with power profiles in the time and frequency domains over 100 Mbps based on field experiments using the implemented Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) transceiver with a 100-MHz bandwidth in a real multipath fading channel. We conducted field experiments in which a base station (BS) employs a 120-degree sectored beam antenna with the antenna height of 50 m and a van equipped with a mobile station (MS) is driven at the average speed of 30 km/h along measurement courses that are approximately 800 to 1000 m away from the BS, where most of the locations along the courses are under non-line-of-sight conditions. Field experimental results show that, by applying 16QAM data modulation and Turbo coding with the coding rate of R = 1/2 to a shared data channel together with two-branch antenna diversity reception, throughput over 100 and 200 Mbps is achieved when the average received signal-to-interference plus noise power ratio (SINR) is approximately 6.0 and 14.0 dB, respectively in a broadband channel bandwidth where a large number of paths such as more than 20 are observed. Furthermore, the location probability for achieving throughput over 100 and 200 Mbps becomes approximately 90 and 20% in these measurement courses, which experience a large number of paths, when the transmission power of the BS is 10 W with a 120-degree sectored beam transmission.
Norihito KINOSHITA Seiichi SAMPEI Eimatsu MORIYAMA Hideichi SASAOKA Yukiyoshi KAMIO Kazuyuki MIYA Katsuhiko HIRAMATSU Kazunori INOGAI Koichi HOMMA
This paper gives field experimental results on 16-ary quadrature amplitude modulation/time division multiple access (16QAM/TDMA) and trellis coded 16QAM/TDMA systems for land mobile communications in order to evaluate its capability of achieving large capacity and high quality data transmission. Pilot symbol aided space diversity and symbol timing synchronization based on maximum likelihood (ML) estimation are applied to both 16QAM/TDMA and trellis coded 16QAM/TDMA to improve transmission quality. For the trellis coded 16QAM/TDMA, trellis coding with Viterbi decoding and 2-frame symbol interleaving are further employed. The field experiments were conducted in the Tokyo metropolitan area of Japan. The results show that 16QAM/TDMA and trellis coded 16QAM/TDMA are practical modulation/access schemes for land mobile communication systems.