1-2hit |
Junji HIGASHIYAMA Yoshiaki TARUSAWA
Correction factors are presented for estimating the RF electromagnetic field strength in the compliance assessment of human exposure from an indoor RF radio source in the frequency range from 800 MHz to 3.5 GHz. The correction factors are derived from the increase in the spatial average electric field strength distribution, which is dependent on the building materials. The spatial average electric field strength is calculated using relative complex dielectric constants of building materials. The relative complex dielectric constant is obtained through measurement of the transmission and reflection losses for eleven kinds of building materials used in business office buildings and single family dwellings.
A new beam tilt dipole array antenna in a simple structuer has been developed for indoor base stations in the 1.9 GHz band. The antenna comprises a radiator and skewed off-center parasitic elements placed around the radiator. With this stucture, the main beam of the array antenna can be tilted for mobile terminals reception by the effect of mutual coupling. Studies on tilt characteristics for antenna dimensions and tilt mechanism by precise current measurements have clarified the operating principle. The antennas with a fan beam and an omnidirectional pattern have been designed. The measured tilt angle was varied in the range of 0 to 26 with little alteration of the horizontal radiation patterns.