1-2hit |
A nonreciprocal left-handed transmission line is proposed and investigated, which is composed of a normally magnetized ferrite microstrip line periodically loaded with inductive stubs but without capacitive loading. The circuit configuration becomes simpler than that of a nonreciprocal left-handed transmission line with both shunt inductive and series capacitive loadings. In the proposed structure, ferrite medium is employed as the substrate not only for the nonreciprocal characteristics but also for negative effective permeability that is essential to establish the left-handedness. After calculations of dispersion curves using equivalent circuit model, scattering parameters along with field patterns are estimated numerically with the help of electromagnetic simulation, and the experiments are also carried out. It is found that the band width of the proposed left-handed transmission line is relatively narrow but the structure still has the high isolation ratio of more than 30 dB.
David R. SMITH Patrick RYE David C. VIER Anthony F. STARR Jack J. MOCK Timothy PERRAM
Artificial electromagnetic structures have significantly broadened the range of wave propagation phenomena available. In particular, it has been shown that metamaterials can be constructed for which the index-of-refraction is negative over a finite band of frequencies. In this paper, we present the design, fabrication and characterization of a metamaterial that exhibits negative refraction. The metamaterial design we explore is anisotropic in the plane of propagation. Based on our analysis and supporting simulations and measurements, we demonstrate that for the geometry considered, the anisotropic metamaterial has the identical negative refraction properties as would an isotropic negative index metamaterial.