1-7hit |
Kang WU Yijun CHEN Huiling HOU Wenhao CHEN Xuwen LIANG
In this letter, a new and accurate frequency estimation method of complex exponential signals is proposed. The proposed method divides the signal samples into several identical segments and sums up the samples belonging to the same segment respectively. Then it utilizes fast Fourier transform (FFT) algorithm with zero-padding to obtain a coarse estimation, and exploits three Fourier coefficients to interpolate a fine estimation based on least square error (LSE) criterion. Numerical results show that the proposed method can closely approach the Cramer-Rao bound (CRB) at low signal-to-noise ratios (SNRs) with different estimation ranges. Furthermore, the computational complexity of the proposed method is proportional to the estimation range, showing its practical-oriented ability. The proposed method can be useful in several applications involving carrier frequency offset (CFO) estimation for burst-mode satellite communications.
Po-Yi SHIH Po-Chuan LIN Jhing-Fa WANG
This paper describes a novel harmonic-based robust voice activity detection (H-RVAD) method with harmonic spectral local peak (HSLP) feature. HSLP is extracted by spectral amplitude analysis between the adjacent formants, and such characteristic can be used to identify and verify audio stream containing meaningful human speech accurately in low SNR environment. And, an enhanced low SNR noisy speech recognition system framework with wakeup module, speech recognition module and confirmation module is proposed. Users can determine or reject the system feedback while a recognition result was given in the framework, to prevent any chance that the voiced noise misleads the recognition result. The H-RVAD method is evaluated by the AURORA2 corpus in eight types of noise and three SNR levels and increased overall average performance from 4% to 20%. In home noise, the performance of H-RVAD method can be performed from 4% to 14% sentence recognition rate in average.
Kang WU Tianheng XU Yijun CHEN Zhengmin ZHANG Xuwen LIANG
In this letter, we investigate the problem of feedforward timing estimation for burst-mode satellite communications. By analyzing the correlation property of frame header (FH) acquisition in the presence of sampling offset, a novel data-aided feedforward timing estimator that utilizes the correlation peaks for interpolating the fractional timing offset is proposed. Numerical results show that even under low signal-to-noise ratio (SNR) and small rolloff factor conditions, the proposed estimator can approach the modified Cramer-Rao bound (MCRB) closely. Furthermore, this estimator only requires two samples per symbol and can be implemented with low complexity with respect to conventional data-aided estimators.
Yunhua LI Bin TIAN Ke-Chu YI Quan YU
In modern communication systems, it is a critical and challenging issue for existing carrier tracking techniques to achieve near-ideal carrier synchronization without the help of pilot signals in the case of symbol rate sampling and low signal-to-noise ratio (SNR). To overcome this issue, this paper proposes an effective carrier frequency and phase offset tracking scheme which has a robust confluent synchronization architecture whose main components are a digital frequency-locked loop (FLL), a digital phase-locked loop (PLL), a modified symbol hard decision block and some sampling rate conversion blocks. As received signals are sampled at symbol baud rate, this carrier tracking scheme is still able to obtain precise estimated values of carrier synchronization parameters under the condition of very low SNRs. The performance of the proposed carrier synchronization scheme is also evaluated by using Monte-Carlo method. Simulation results confirm the feasibility of this carrier tracking scheme and demonstrate that it ensures that both the rate-3/4 irregular low-density parity-code (LDPC) coded system and the military voice transmission system utilizing the direct sequence spread spectrum (DSSS) technique achieve satisfactory bit-error rate (BER) performance at correspondingly low SNRs.
This paper proposes an enhanced feature detection method for the OFDM signals of digital TV (DTV) standards, namely Digital Video Broadcasting-Terrestrial (DVB-T) and Integrated Services Digital Broadcasting-Terrestrial (ISDB-T). The proposed method exploits property of time-domain sliding correlation results of DTV signals with the pilots that are inserted into OFDM symbols. Some correlation outputs are much larger than the remaining outputs and are called correlation peaks here, and, the distance between their positions in the correlation output sequence keep constant regardless of the received DTV timings. The proposed method then derives sensing test statistic with improved SNR by aggregating the correlation peaks based on their positions. Performance of the proposed method is evaluated by both computer simulation and hardware implementation. Simulation results for DVB-T detection verify that compared to the optimal conventional sensing method, the proposed method achieves superior sensing performance. It reduces sampling time by about 25% for the same sensing performance while increasing computational complexity by around 0.0001%. Hardware performance further verifies that the proposed method is able to accurately detect ISDB-T at the low SNR of -14.5 dB by employing 8 OFDM symbol durations of samples.
Wei FENG Yanmin WANG Yunzhou LI Shidong ZHOU Jing WANG
In this letter, we address the problem of downlink power allocation for the generalized distributed antenna system (DAS) with cooperative clusters. Considering practical applications, we assume that only the large-scale channel state information is available at the transmitter. The power allocation scheme is investigated with the target of ergodic achievable sum rate maximization. Based on some approximations and the Rayleigh Quotient Theory, the simple selective power allocation scheme is derived for the low SNR scenario and the high SNR scenario, respectively. The methods are applicable in practice due to their low complexity.
Kichun CHO Mihyun LEE Jaeweon CHO Hokyu CHOI Dong Seek PARK Seong-Jun OH
IEEE802.16m standard is based on the MIMO-OFDM technology to provide high speed packet data service both in downlink and uplink. For the downlink broadcasting of control information, in order to extend the coverage of a cell, the nominal operating point should be set for the user at the edge of a cell, and no feedback should be used. For broadcasting that information, the MIMO technology should take a transmit diversity form targeted for low SNR. Several transmit diversity schemes are presented and preferable modes of operations for the broadcasting channel are proposed with numerical analysis.