1-4hit |
A 10-GHz sub-harmonic Gilbert mixer is demonstrated in this paper using the 0.35 µm SiGe BiCMOS technology. The time-delay when the sub-harmonic LO (Local Oscillator) stage generates sub-harmonic LO signals is compensated by using fully symmetrical multiplier pairs. High RF-to-IF isolation and sub-harmonic LO Gilbert cell with excellent frequency response can be achieved by the elimination of the time-delay. The SiGe BiCMOS sub-harmonic micromixer exhibits 17 dB conversion gain, -74 dB 2LO-to-RF isolation, IP1 dB of -20 dBm, and IIP3 of -10 dBm. The measured double sideband noise figure is 16 dB from 100-kHz to 100-MHz because the SiGe bipolar device has very low 1/f noise corner.
The spatial distribution of the electric field in the low to high frequency bands radiated from printed circuit board (PCB) should be estimated continuously from near to far field. The characteristic of the electric field distribution is analyzed by the FDTD-multiple analysis space (FDTD-MAS) method, which can analyze from near to far field continuously, and compared with measured results. Since the analyzed electric field distribution is good agreement with measured results, it is suggested that the continuous distribution for electric field from near to far field can be calculated by the FDTD-MAS method. The electric field at low frequency is larger than that at high frequency within 1 m.
Mizushi MATSUDA Tsutomu MATSUURA Koichi KATO Hiroshi OYAMA Amane HAYASHI Satoru HIRANO Shinya KURIKI
We have fabricated and characterized two types of high-Tc planar SQUID gradiometers having different line width of pickup loops. The device worked in flux-locked loop (FLL) operation even in laboratory environment without any shielding. A magnetic field gradient resolution of a parallel-type device in a lightly shielded room was about 0.5 pT/cmHz1/2 at 1 kHz and 2 pT/cmHz1/2 at 1 Hz. The device was possible to record magnetocardiograms in a shielded room. QRS-complex peaks of about 10 pT PP/4mm are clearly observed. For a mesh-type device, the increase of low frequency noise in the open laboratory environment was less than that for a parallel-type.
Michal HATLE Kazuaki KOJIMA Katsuyoshi HAMASAKI
The magnitude of low frequency noise is studied in a Nb-(nanoconstrictions)-NbN system with adjustable current-voltage characteristics. We find that the magnitude of low frequency noise decreases sharply with increasing the subgap conductivity of the device. We suggest a qualitative explanation of this observation in terms of gradual build up of the nanoconstriction region by field assisted growth. The decrease of low frequency noise is related to the "cleanliness" of the system as measured by the amount of Andreev reflection-related conductivity. The scaling of the magnitude of low frequency noise with device resistance is also discussed.